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TuningGoal.ControllerPoles class
Package: TuningGoal

Constraint on controller dynamics for control system tuning

Description

Use the TuningGoal.ControllerPoles requirement object to specify a tuning
requirement that constrains the dynamics of a tunable component in a control system
model. Use this requirement for constraining the dynamics of tuned blocks identified in
a slTuner interface to a Simulink® model. If you are tuning a genss model of a control
system, use the requirement to constrain tunable elements such as ltiblock.tf or
ltiblock.ss . The TuningGoal.ControllerPoles requirement lets you control the
minimum decay rate, minimum damping, and maximum natural frequency of the poles
of the tunable element, ensuring that the controller is free of fast or resonant dynamics.
The requirement can also ensure stability of the tuned value of the tunable element.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-4 of the object.

Construction

Req = TuningGoal.ControllerPoles(blockID,mindecay,mindamping,

maxfreq) creates a tuning requirement that constrains the dynamics of a tunable
component of a control system. The minimum decay rate, minimum damping constant,
and maximum natural frequency define a region of the complex plane in which poles of
the component must lie. A nonnegative minimum decay ensures stability of the tuned
poles. The requirement applies to all poles in the block except fixed integrators, such as
the I term of a PID controller.

Input Arguments

blockID

Tunable component to constrain, specified as a string.
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The string blockID designates one of the tuned blocks in the control system you are
tuning.

• For tuning a Simulink model of a control system, blockid is a tuned block in the
slTuner interface to the model.

• For tuning a genss model of a control system, blockid is one of the control design
blocks of that model.

mindecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the
frequency units of the control system model you are tuning.

Specify mindecay ≥ 0 to ensure that the block is stable. If you specify a negative value,
the tuned block can include unstable poles.

When you tune the control system using this requirement, all poles of the tunable
component are constrained to satisfy:

• Re(s) < -mindecay, for continuous-time systems.
• log(|z|) < -mindecay*Ts, for discrete-time systems with sample time Ts.

Default: 0

mindamping

Desired minimum damping ratio of poles of the tunable block, specified as a value
between 0 and 1.

Poles of the block that depend on the tunable parameters are constrained to satisfy
Re(s) < -mindamping*|s|. In discrete time, the damping ratio is computed using
s=log(z)/Ts.

Default: 0

maxfreq

Desired maximum natural frequency of poles of the tunable block, specified as a scalar
value in the units of the control system model you are tuning.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time
blocks, or |log(z)| < maxfreq*Ts for discrete-time blocks with sample time Ts. This
constraint prevents fast dynamics in the tunable block.
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Default: Inf

Properties

Block

Name of tunable component to constrain, specified as a string. The blockID input
argument sets the value of Block.

MinDecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the
frequency units of the control system you are tuning. The initial value of this property is
set by the mindecay input argument.

MinDecay ≥ 0 to ensure that the block is stable. If you specify a negative value, the tuned
block can include unstable poles.

When you tune the control system using this requirement, all poles of the tunable
component are constrained to satisfy Re(s) < -MinDecay for continuous-time systems,
or log(|z|) < -MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal.ControllerPoles
requirement. Change the minimum decay rate to 0.001:

Req.MinDecay = 0.001;

Default: 0

MinDamping

Desired minimum damping ratio of poles of the tunable block, specified as a value
between 0 and 1. The initial value of this property is set by the mindamping input
argument.

Poles of the block that depend on the tunable parameters are constrained to satisfy
Re(s) < -MinDamping*|s|. In discrete time, the damping ratio is computed using
s=log(z)/Ts.

Default: 0
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MaxFrequency

Desired maximum natural frequency of poles of the tunable block, specified as a scalar
value in the frequency units of the control system model you are tuning. The initial value
of this property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time
blocks, or |log(z)| < maxfreq*Ts for discrete-time blocks with sample time Ts. This
constraint prevents fast dynamics in the tunable block.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal.ControllerPoles
requirement. Change the maximum frequency to 1000:

Req.MaxFrequency = 1000;

Default: Inf

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Examples

Constrain Dynamics of Tunable Transfer Function

Create a tuning requirement that constrains the dynamics of a tunable transfer function
block in a tuned control system.

For this example, suppose that you are tuning a control system that includes a
compensator block parametrized as a second-order transfer function. Create a tuning
requirement that restricts the poles of that transfer function to the region ,

.

Create a tunable component that represents the compensator.



1 Class Reference

1-6

C = ltiblock.tf('Compensator',2,2);

This command creates a Control Design Block named 'Compensator' with two poles
and two zeroes. You can construct a tunable control system model, T, by interconnecting
this Control Design Block with other tunable and numeric LTI models. If you tune T
using systune, the values of these poles and zeroes are unconstrained by default.

Create a tuning requirement to constrain the dynamics of the compensator block. Set the
minimum decay rate to 0.1 rad/s, and set the maximum frequency to 30 rad/s.

Req = TuningGoal.ControllerPoles('Compensator',0.1,0,30);

The mindamping input argument is 0, which imposes no constraint on the damping
constant of the poles the block.

If you tune T using systune and the tuning requirement Req, the poles of the
compensator block are constrained satisfy these values. After you tune T, you can use
viewSpec to validate the tuned control system against the requirement.

Tips

• TuningGoal.ControllerPoles restricts the dynamics of a single tunable
component of the control system. To ensure the stability or restrict the overall
dynamics of the tuned control system, use TuningGoal.Poles.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal.ControllerPoles, f(x) reflects the relative satisfaction or violation of
the goal. For example, if you attempt to constrain the pole of a tuned block to a minimum
damping of ζ = 0.5, then:

• f(x) = 1 means the damping of the pole is ζ = 0.5 exactly.
• f(x) = 1.1 means the damping is ζ = 0.5/1.1 = 0.45, roughly 10% less than the target.
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• f(x) = 0.9 means the damping is ζ = 0.5/0.9 = 0.55, roughly 10% better than the target.

See Also
systune (for slTuner) | TuningGoal.Poles | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | ltiblock.tf | ltiblock.ss

How To
• “System Dynamics Specifications”
• “Models with Tunable Coefficients”
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TuningGoal.Gain class
Package: TuningGoal

Gain constraint for control system tuning

Description

Use the TuningGoal.Gain object to specify a constraint that limits the gain from a
specified input to a specified output. Use this requirement for control system tuning with
tuning commands such as systune or looptune.

When you use a TuningGoal.Gain requirement, the software attempts to tune
the system so that the gain from the specified input to the specified output does not
exceed the specified value. By default, the constraint is applied with the loop closed.
To apply the constraint to an open-loop response, use the Openings property of the
TuningGoal.Gain object.

You can use a gain constraint to:

• Enforce a design requirement of disturbance rejection across a particular input/output
pair, by constraining the gain to be less than 1

• Enforce a custom roll-off rate in a particular frequency band, by specifying a gain
profile in that band

Construction

Req = TuningGoal.Gain(inputname,outputname,gainvalue) creates a tuning
requirement Req. This requirement constrains the gain from inputname to outputname
to remain below the value gainvalue.

You can specify the inputname or outputname as cell arrays (vector-valued signals).
If you do so, then the tuning requirement constrains the largest singular value of the
transfer matrix from inputname to outputname. See sigma for more information about
singular values.

Req = TuningGoal.Gain(inputname,outputname,gainprofile) specifies
the maximum gain as a function of frequency. You can specify the target gain profile
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(maximum gain across the I/O pair) as a smooth transfer function. Alternatively, you can
sketch a piecewise error profile using an frd model.

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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gainvalue

Maximum gain (linear). The gain constraint Req specifies that the gain from inputname
to outputname is less than gainvalue.

gainvalue is a scalar value. If the signals inputname or outputname are vector-valued
signals, then gainvalue constrains the largest singular value of the transfer matrix from
inputname to outputname. See sigma for more information about singular values.

gainprofile

Gain profile as a function of frequency. The gain constraint Req specifies that the gain
from inputname to outputname at a particular frequency is less than gainprofile. You can
specify gainprofile as a smooth transfer function (tf , zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight function.
When you do so, the software automatically maps the gain profile onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model.

gainprofile is a SISO transfer function. If inputname or outputname are cell arrays,
gainprofile applies to all I/O pairs from inputname to outputname

Properties

MaxGain

Maximum gain as a function of frequency, expressed as a SISO zpk model.

The software automatically maps the gainvalue or gainprofile input arguments to a zpk
model. The magnitude of this zpk model approximates the desired gain profile, and is
stored in the MaxGain property. Use viewSpec(Req) to plot the magnitude of MaxGain.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
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tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

By default, TuningGoal.Gain imposes a stability requirement on the closed-
loop transfer function from the specified inputs to outputs, in addition to the gain
requirement. If stability is not required or cannot be achieved, set Stabilize to false
to remove the stability requirement. For example, if the gain constraint applies to an
unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.
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Use this property to specify the relative amplitude of each entry in vector-valued
output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN
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Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Gain requirement, f(x) is given by:
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f x D T s x Do i( ) = ( )-

•

1 1

MaxGain
, .

T(s,x) is the closed-loop transfer function from Input to Output. Do and Di are diagonal
matrices with the OutputScaling and InputScaling property values on the diagonal,
respectively. ◊

•

 denotes the H∞ norm (see norm).

Examples

Disturbance rejection

Create a gain constraint that enforces a disturbance rejection requirement from a signal
'du' to a signal 'u'.

Req = TuningGoal.Gain('du','u',1);

This requirement specifies that the maximum gain of the response from 'du' to 'u' not
exceed 1 (0 dB).

Custom roll-off specification

Create a gain constraint that constrains the response from a signal 'du' to a signal 'u'
to roll off at 20 dB/decade at frequencies greater than 1. The gain constraint also specifies
disturbance rejection (maximum gain of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);

Req = TuningGoal.Gain('du','u',gmax);

These commands use a frd model to specify the gain profile as a function of frequency.
The maximum gain of 1 dB at the frequency 1 rad/s, together with the maximum gain of
0.01 dB at the frequency 100 rad/s, specifies the desired rolloff of 20 dB/decade.

The software converts gmax into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)
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The yellow region indicates where the requirement is violated.

Disturbance rejection

Create a gain constraint that enforces a disturbance rejection requirement from a signal
'du' to a signal 'u'.

Req = TuningGoal.Gain('du','u',1);

This requirement specifies that the maximum gain of the response from 'du' to 'u' not
exceed 1 (0 dB).
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See Also
systune (for slTuner) | TuningGoal.Tracking | looptune | viewSpec |
systune | looptune (for slTuner) | TuningGoal.LoopShape | slTuner |
makeweight

How To
• “Frequency-Domain Specifications”
• “Control of a Linear Electric Actuator”
• “Multi-Loop PID Control of a Robot Arm”
• “MIMO Control of Diesel Engine”
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TuningGoal.LoopShape class

Package: TuningGoal

Target loop shape for control system tuning

Description

Use the TuningGoal.LoopShape object to specify a target gain profile (gain as
a function of frequency) of an open-loop response. The TuningGoal.LoopShape
requirement constrains the open-loop, point-to-point response (L) at a specified location
in your control system. Use this requirement for control system tuning with tuning
commands, such as systune or looptune.

When you tune a control system, the target open-loop gain profile is converted into
constraints on the inverse sensitivity function inv(S)  = (I + L) and the complementary
sensitivity function T = 1–S. These constraints are illustrated for a representative tuned
system in the following figure.
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Where L is much greater than 1, a minimum gain constraint on inv(S) (green shaded
region) is equivalent to a minimum gain constraint on L. Similarly, where L is much
smaller than 1, a maximum gain constraint on T (red shaded region) is equivalent to
a maximum gain constraint on L. The gap between these two constraints is twice the
CrossTol parameter, which specifies the frequency band where the loop gain can cross 0
dB.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater
than 1 are interpreted as minimum performance requirements. Such values are lower
bounds on the smallest singular value of the open-loop response. Gain profile values less
than one are interpreted as minimum roll-off requirements, which are upper bounds on
the largest singular value of the open-loop response. For more information about singular
values, see sigma.

Use TuningGoal.LoopShape when the loop shape near crossover is simple or
well understood (such as integral action). To specify only high gain or low gain
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constraints in certain frequency bands, use TuningGoal.MinLoopGain and
TuningGoal.MaxLoopGain. When you do so, the software determines the best loop
shape near crossover.

Construction

Req = TuningGoal.LoopShape(location,loopgain) creates a tuning requirement
for shaping the open-loop response measured at the specified location. The magnitude
of the single-input, single-output (SISO) transfer function loopgain specifies the target
open-loop gain profile. You can specify the target gain profile (maximum gain across the
I/O pair) as a smooth transfer function or sketch a piecewise error profile using an frd
model.

Req = TuningGoal.LoopShape(location,loopgain,crosstol) specifies a
tolerance on the location of the crossover frequency. crosstol expresses the tolerance in
decades. For example, crosstol = 0.5 allows gain crossovers within half a decade on either
side of the target crossover frequency specified by loopgain. When you omit crosstol,
the tuning requirement uses a default value of 0.1 decades. You can increase crosstol
when tuning MIMO control systems. Doing so allows more widely varying crossover
frequencies for different loops in the system.

Req = TuningGoal.LoopShape(location,wc) specifies just the target gain
crossover frequency. This syntax is equivalent to specifying a pure integrator loop shape,
loopgain = wc/s.

Req = TuningGoal.LoopShape(location,wcrange) specifies a range for the target
gain crossover frequency. The range is a vector of the form wcrange = [wc1,wc2]. This
syntax is equivalent to using the geometric mean sqrt(wc1*wc2) as wc and setting
crosstol to the half-width of wcrange in decades. Using a range instead of a single wc
value increases the ability of the tuning algorithm to enforce the target loop shape for all
loops in a MIMO control system.

Input Arguments

location

Location where the open-loop response shape to be constrained is measured, specified as
a string or cell array of strings that identify one or more locations in the control system to
tune. What locations are available depends on what kind of system you are tuning:
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• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

The loop shape requirement applies to the point-to-point open-loop transfer function
at the specified location. That transfer function is the open-loop response obtained by
injecting signals at the location and measuring the return signals at the same point.

If location is a cell array, then the loop-shape requirement applies to the MIMO open-
loop transfer function.

loopgain

Target open-loop gain profile as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model. When you do
so, the software automatically maps your specified gain profile to a zpk model whose
magnitude approximates the desired gain profile. Use viewSpec(Req) to plot the
magnitude of that zpk model.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater
than 1 are interpreted as minimum performance requirements. These values are
lower bounds on the smallest singular value of L. Gain profile values less than one are
interpreted as minimum roll-off requirements, which are upper bounds on the largest
singular value of L. For more information about singular values, see sigma.
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crosstol

Tolerance in the location of crossover frequency, in decades. specified as a scalar value.
For example, crosstol = 0.5 allows gain crossovers within half a decade on either side of
the target crossover frequency specified by loopgain. Increasing crosstol increases the
ability of the tuning algorithm to enforce the target loop shape for all loops in a MIMO
control system.

Default: 0.1

wc

Target crossover frequency, specified as a positive scalar value. Express wc in units of
rad/TimeUnit, where TimeUnit is the TimeUnit property of the control system model
you are tuning.

wcrange

Range for target crossover frequency, specified as a vector of the form [wc1,wc2].
Express wc in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
control system model you are tuning.

Properties

LoopGain

Target loop shape as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model LoopGain.

CrossTol

Tolerance on gain crossover frequency, in decades.

The initial value of CrossTol is set by the crosstol input when you create the
requirement object.

Default: 0.1
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Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to false if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-
loop response.

Default: 'on'

Location

Location at which the open-loop response shape to be constrained is measured, specified
as a string or cell array of strings that identify one or more analysis points in the control
system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal.LoopShape requirement.
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Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';
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Default: []

Algorithms
When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.LoopShape requirement, f(x) is given by:

f x
W S

W T

S

T

( ) =

•

.

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. (If the LoopScaling property is set
to 'off', then D = I.)

T = S – I is the complementary sensitivity function.

WS and WT are weighting functions derived from the specified loop shape.

Examples

Loop Shape and Crossover Tolerance

Create a target gain profile requirement for the following control system. Specify integral
action, gain crossover at 1, and a roll-off requirement of 40 dB/decade.
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The requirement should apply to the open-loop response measured at the
AnalysisPoint block X. Specify a crossover tolerance of 0.5 decades.

LS = frd([100 1 0.0001],[0.01 1 100]);

Req = TuningGoal.LoopShape('X',LS,0.5);

The software converts LS into a smooth function of frequency that approximates the
piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)

The green and red regions indicate the bounds for the inverse sensitivity, inv(S) =
1-G*C, and the and the complementary sensitivity, T = 1-S, respectively. The gap
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between these regions at 0 dB gain reflects the specified crossover tolerance, which is
half a decade to either side of the target loop crossover.

When you use viewSpec(Req,CL) to validate a tuned closed-loop model of this control
system, CL, the tuned values of S and T are also plotted.

Specify Different Loop Shapes for Multiple Loops

Create separate loop shape requirements for the inner and outer loops of the following
control system.

r
-

G2

+

-

C1

+

G1

C2

PID PI
u1 u2

y2 y1
x2

x1

For the inner loop, specify a loop shape with integral action, gain crossover at 1,
and a roll-off requirement of 40 dB/decade. Additionally, specify that this loop shape
requirement should be enforced with the outer loop open.

LS2 = frd([100 1 0.0001],[0.01 1 100]);

Req2 = TuningGoal.LoopShape('X2',LS2);

Req2.Openings = 'X1';

Specifying 'X2' for the location indicates that Req2 applies to the point-to point, open-
loop transfer function at the location X2. Setting Req2.Openings indicates that the loop
is opened at the analysis point X1 when Req2 is enforced.

By default, Req2 imposes a stability requirement on the inner loop as well as the
loop shape requirement. In some control systems, however, inner-loop stability might
not be required, or might be impossible to achieve. In that case, remove the stability
requirement from Req2 as follows.

Req2.Stabilize = false;

For the outer loop, specify a loop shape with integral action, gain crossover at 0.1, and a
roll-off requirement of 20 dB/decade.
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LS1 = frd([10 1 0.01],[0.01 0.1 10]);

Req1 = TuningGoal.LoopShape('X1',LS1);

Specifying 'X1' for the location indicates that Req1 applies to the point-to point, open-
loop transfer function at the location X1. You do not have to set Req1.Openings because
this loop shape is enforced with the inner loop closed.

You may need to tune the control system with both loop shaping requirements Req1 and
Req2. To do so, use both requirements as inputs to the tuning command. For example,
suppose CL0 is a tunable genss model of the closed-loop control system. In that case, the
following command tunes the control system to both requirements.

[CL,fSoft] = systune(CL0,[Req1,Req2]);

Loop Shape for Tuning Simulink Model

Create a loop-shape requirement for the feedback loop on 'q' in the following control
system, which is the Simulink model rct_airframe2. Specify that the loop-shape
requirement is enforced with the 'az' loop open.

Open the model.

open_system('rct_airframe2')

Create a loop shape requirement that enforces integral action with a crossover a 2 rad/s
for the 'q' loop. This loop shape corresponds to a loop shape of 2/s.
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s = tf('s');

shape = 2/s;

Req = TuningGoal.LoopShape('q',shape);

Specify the location at which to open an additional loop when enforcing the requirement.

Req.Openings = 'az';

To use this requirement to tune the Simulink model, create an slTuner interface to the
model. Identify the block to tune in the interface.

ST0 = slTuner('rct_airframe2','MIMO Controller');

Designate both az and q as analysis points in the slTuner interface.

addPoint(ST0,{'az','q'});

This command makes q available as an analysis location. It also allows the tuning
requirement to be enforced with the loop open at az.

You can now tune the model using Req and any other tuning requirements. For example:

[ST,fSoft] = systune(ST0,Req);

Loop Shape Requirement with Crossover Range

Create a tuning requirement specifying that the open-loop response of loop identified by
'X' cross unity gain between 50 and 100 rad/s.

Req = TuningGoal.LoopShape('X',[50,100]);

Examine the resulting requirement to see the target loop shape.

viewSpec(Req)
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The plot shows that the requirement specifies an integral loop shape, with crossover
around 70 rad/s, the geometrical mean of the range [50,100]. The gap at 0 dB between
the minimum low-frequency gain (green region) and the maximum high-frequency gain
(red region) reflects the allowed crossover range [50,100].

See Also
looptune (for slTuner) | TuningGoal.MinLoopGain |
TuningGoal.MaxLoopGain | viewSpec | TuningGoal.Gain | slTuner | looptune
| systune | systune (for slTuner) | TuningGoal.Tracking | frd
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How To
• “Loop Shape and Stability Margin Specifications”
• “Tuning Multi-Loop Control Systems”
• “Tuning of a Digital Motion Control System”
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TuningGoal.LQG class
Package: TuningGoal

Linear-Quadratic-Gaussian (LQG) goal for control system tuning

Description

Use the TuningGoal.LQG object to specify a tuning requirement for quantifying control
performance as an LQG cost. It is applicable to any control structure, not just the
classical observer structure of optimal LQG control. You can use this requirement for
control system tuning with tuning commands, such as systune or looptune.

The LQG cost is given by:
J = E(z(t)′ QZ z(t)).

z(t) is the system response to a white noise input vector w(t). The covariance of w(t is
given by:
E(w(t)w(t)′) = QW.

The vector w(t) typically consists of external inputs to the system such as noise,
disturbances, or command. The vector z(t) includes all the system variables that
characterize performance, such as control signals, system states, and outputs. E(x)
denotes the expected value of the stochastic variable x.

The cost function J can also be written as an average over time:

J E
T

z t QZ z t dt
T

T
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After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-36 of the object.

Construction

Req = TuningGoal.LQG(wname,zname,QW,QZ) creates an LQG requirement. The
strings or cell arrays of strings wname and zname specify the signals making up w(t) and
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z(t). The matrices QW and QZ specify the noise covariance and performance weight. These
matrices must be symmetric nonnegative definite. Use scalar values for QW and QZ to
specify multiples of the identity matrix.

Input Arguments

wname

Noise inputs, w(t), specified as a string or a cell array of strings for vector-valued signals.
The signals available to designate as noise inputs for the tuning requirement are as
follows.

• If you are using the requirement to tune a Simulink model of a control system, then
wname can include:

• Any model input
• Any linearization input point in the model
• Any signal identified as a Controls, Measurements, Switches, or IOs signal in

an slTuner interface associated with the Simulink model
• If you are using the requirement to tune a generalized state-space model (genss) of a

control system using systune, then wname can include:

• Any input of the control system model
• Any channel of an AnalysisPoint block in the control system model

For example, if you are tuning a control system model, T, then wname can be a string
contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named X, then wname can include X.

• If you are using the requirement to tune a controller model, C0 for a plant G0, using
looptune, then wname can include:

• Any input of C0 or G0
• Any channel of an AnalysisPoint block in C0 or G0

If wname is a channel of an AnalysisPoint block of a generalized model, the noise input
for the requirement is the implied input associated with the switch:
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zname

Performance outputs, z(t), specified as a string or a cell array of strings for vector-
valued signals. The signals available to designate as performance outputs for the tuning
requirement are as follows.

• If you are using the requirement to tune a Simulink model of a control system, then
zname can include:

• Any model output
• Any linearization output point in the model
• Any signal identified as a Controls, Measurements, Switches, or IOs signal in

an slTuner interface associated with the Simulink model
• If you are using the requirement to tune a generalized state-space model (genss) of a

control system using systune, then zname can include:

• Any output of the control system model
• Any channel of an AnalysisPoint block in the control system model

For example, if you are tuning a control system model, T, then zname can be a string
contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
channel named X, then zname can include X.

• If you are using the requirement to tune a controller model, C0 for a plant G0, using
looptune, then zname can include:

• Any input of C0 or G0
• Any channel of an AnalysisPoint block in C0 or G0

If zname is a channel of an AnalysisPoint block of a generalized model, the
performance output for the requirement is the implied output associated with the switch:
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QW

Covariance of the white noise input vector w(t), specified as a scalar or a matrix. Use a
scalar value to specify a multiple of the identity matrix. Otherwise specify a symmetric
nonnegative definite matrix with as many rows as there are entries in the vector w(t). A
diagonal matrix means the entries of w(t) are uncorrelated.

The covariance of w(t is given by:
E(w(t)w(t)′) = QW.

When you are tuning a control system in discrete time, the LQG requirement assumes:
E(w[k]w[k]′) = QW/Ts.

Ts is the model sample time. This assumption ensures consistent results with tuning in
the continuous-time domain. In this assumption, w[k] is discrete-time noise obtained by
sampling continuous white noise w(t) with covariance QW. If in your system w[k] is a
truly discrete process with known covariance QWd, use the value Ts*QWd for the QW
value when creating the LQG goal.

Default: I

QZ

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a
multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite
matrix. Use a diagonal matrix to independently scale or penalize the contribution of each
variable in z.

The performance weights contribute to the cost function according to:
J = E(z(t)′ QZ z(t)).

When you use the LQG requirement as a hard goal, the software tries to drive the
cost function J < 1. When you use it as a soft goal, the cost function J is minimized
subject to any hard goals and its value is contributed to the overall objective function.
Therefore, select QZ values to properly scale the cost function so that driving it below 1
or minimizing it yields the performance you require.
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Default: I

Properties

NoiseCovariance

Covariance matrix of the noise inputs w(t), specified as a matrix. The value of the
NoiseCovariance property is set by the WZ input argument when you create the LQG
requirement.

PerformanceWeight

Weights for the performance signals z(t), specified as a matrix. The value of the
PerformanceWeight property is set by the QZ input argument when you create the
LQG requirement.

Input

Noise input signal names, specified as a cell array of strings. These strings specify the
names of the inputs of the transfer function that the tuning requirement constrains.
The initial value of the Input property is set by the wname input argument when you
construct the requirement object.

Output

Performance output signal names, specified as a cell array of strings. These strings
specify the names of the outputs of the transfer function that the tuning requirement
constrains. The initial value of the Output property is set by the zname input argument
when you construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;
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When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value of
the tuning goal, is infinite for continuous-time systems with nonzero feedthrough.
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systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = ltiblock.ss('C',1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.Value = 0;

C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as ltiblock.ss.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For the TuningGoal.LQG requirement, f(x) is given by the cost function J:
J = E(z(t)′ QZ z(t)).

When you use the LQG requirement as a hard goal, the software tries to drive the
cost function J < 1. When you use it as a soft goal, the cost function J is minimized
subject to any hard goals and its value is contributed to the overall objective function.
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Therefore, select QZ values to properly scale the cost function so that driving it below 1
or minimizing it yields the performance you require.

See Also
systune | systune (for slTuner) | viewSpec |
TuningGoal.WeightedVariance | slTuner | evalSpec | TuningGoal.Variance

How To
• “Time-Domain Specifications”
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TuningGoal.Margins class
Package: TuningGoal

Stability margin requirement for control system tuning

Description

Use the TuningGoal.Margins requirement object to specify a tuning requirement
for the gain and phase margins of a SISO or MIMO feedback loop. You can use this
requirement for validating a tuned control system with viewSpec. You can also use
the requirement for control system tuning with tuning commands such as systune or
looptune.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-42 of the object.

After using the requirement to tune a control system, you can visualize the requirement
and the tuned value using the viewSpec command. For information about interpreting
the margins goal, see “Interpreting Stability Margins in Control System Tuning”.

Construction

Req = TuningGoal.Margins(location,gainmargin,phasemargin) creates a
tuning requirement that specifies the minimum gain and phase margins at the specified
location in the control system.

Input Arguments

location

Location in the control system at which the minimum gain and phase margins apply,
specified as a string or cell array of strings. These strings identify one or more analysis
locations in the control system to tune. What locations are available depends on what
kind of system you are tuning:

• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
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interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

The margin requirements apply to the point-to-point, open-loop transfer function at the
specified loop-opening location. That transfer function is the open-loop response obtained
by injecting signals at the specified location, and measuring the return signals at the
same point.

If location is a cell array, then the margin requirement applies to the MIMO open-loop
transfer function.

gainmargin

Required minimum gain margin for the feedback loop, specified as a scalar value in dB.

For MIMO feedback loops, the gain margin is based upon the notion of disk margins,
which guarantee stability for concurrent gain and phase variations of ±gainmargin and
±phasemargin in all feedback channels. See loopmargin for more information about
disk margins.

phasemargin

Required minimum phase margin for the feedback loop, specified as a scalar value in
degrees.

For MIMO feedback loops, the phase margin is based upon the notion of disk margins,
which guarantee stability for concurrent gain and phase variations of ±gainmargin and
±phasemargin in all feedback channels. See loopmargin for more information about
disk margins.
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Properties

GainMargin

Required minimum gain margin for the feedback loop, specified as a scalar value in
decibels (dB).

The value of the GainMargin property is set by the gainmargin input argument when
you create the TuningGoal.Margins requirement.

PhaseMargin

Required minimum phase margin for the feedback loop, specified as a scalar value in
degrees.

The value of the PhaseMargin property is set by the phasemargin input argument when
you create the TuningGoal.Margins requirement.

ScalingOrder

Controls the order (number of states) of the scalings involved in computing MIMO
stability margins. Static scalings (ScalingOrder = 0) are used by default. Increasing
the order may improve results at the expense of increased computations. Use viewSpec
to assess the gap between optimized and actual margins. If this gap is too large, consider
increasing the scaling order. See “Interpreting Stability Margins in Control System
Tuning”.

Default: 0 (static scaling)

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. For best results with stability margin requirements, pick a frequency band
extending about one decade on each side of the gain crossover frequencies. For example,
suppose Req is a TuningGoal.Margins requirement that you are using to tune
a system with approximately 10 rad/s bandwidth. To limit the enforcement of the
requirement, use the following command:
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Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Location

Location at which the minimum gain and phase margins apply, specified as a string or
cell-array of strings. These strings identify one or more analysis-point locations in the
control system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal.Margins requirement.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
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getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Margins requirement, f(x) is given by:

f x S I( ) = -
•

2a a .

S = D–1[I – L(s,x)]–1D is the scaled sensitivity function.

L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor.

α is a scalar parameter computed from the specified gain and phase margin.
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Examples

SISO Margin Requirement Evaluated with Additional Loop Opening

Create a margin requirement for the inner loop of the following control system. The
requirement imposes a minimum gain margin of 5 dB and a minimum phase margin of
40 degrees.

Create a model of the system. To do so, specify and connect the numeric plant models
G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the
AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and
tuning.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

AP1 = AnalysisPoint('AP1');

AP2 = AnalysisPoint('AP2');

T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement object.

Req = TuningGoal.Margins('AP2',5,40);

This requirement imposes the specified stability margins on the feedback loop identified
by the AnalysisPoint channel 'AP2', which is the inner loop.

Specify that these margins are evaluated with the outer loop of the control system open.

Req.Openings = {'AP1'};
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Adding 'AP1' to the Openings property of the tuning requirements object ensures that
systune evaluates the requirement with the loop open at that location.

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then use viewSpec to validate the tuned control system against the
requirement.

MIMO Margin Requirement in Frequency Band

Create a requirement that sets minimum gain and phase margins for the loop defined by
three loop-opening locations in a control system to tune. Because this loop is defined by
three loop-opening locations, it is a MIMO loop.

The requirement sets a minimum gain margin of 10 dB and a minimum phase margin of
40 degrees, within the band between 0.1 and 10 rad/s.

Req = TuningGoal.Margins({'r','theta','phi'},10,40);

The names 'r', 'theta', and 'phi' must specify valid loop-opening locations in the
control system that you are tuning.

Limit the requirement to the frequency band between 0.1 and 10 rad/s.

 Req.Focus = [0.1 10];

See Also
| systune (for slTuner) | looptune | systune | looptune (for slTuner) |
viewSpec | evalSpec

How To
• “Loop Shape and Stability Margin Specifications”
• “Tuning Control Systems with SYSTUNE”
• “Digital Control of Power Stage Voltage”
• “Tuning of a Two-Loop Autopilot”
• “Fixed-Structure Autopilot for a Passenger Jet”
• “Interpreting Stability Margins in Control System Tuning”
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TuningGoal.MinLoopGain class

Package: TuningGoal

Minimum loop gain constraint for control system tuning

Description

Use the TuningGoal.MinLoopGain object to enforce a minimum loop gain in a
particular frequency band. Use this requirement with control system tuning commands
such as systune or looptune.

This requirement imposes a minimum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the minimum open-loop gain as a
function of frequency (a minimum gain profile). For MIMO feedback loops, the specified
gain profile is interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum
gain constraint on the inverse of the sensitivity function, inv(S)  = (I + L).

The following figure shows a typical specified minimum gain profile (dashed line) and a
resulting tuned loop gain, L (blue line). The green region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much larger
than 1, imposing a minimum gain on inv(S) is a good proxy for a minimum open-loop
gain.



1 Class Reference

1-48

TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain specify only low-gain or
high-gain constraints in certain frequency bands. When you use these requirements,
systune and looptune determine the best loop shape near crossover. When the loop
shape near crossover is simple or well understood (such as integral action), you can use
TuningGoal.LoopShape to specify that target loop shape.

Construction

Req = TuningGoal.MinLoopGain(location,loopgain) creates a tuning
requirement for boosting the gain of a SISO or MIMO feedback loop. The requirement
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specifies that the open-loop frequency response (L) measured at the specified locations
exceeds the minimum gain profile specified by loopgain.

You can specify the minimum gain profile as a smooth transfer function or sketch a
piecewise error profile using an frd model or the makeweight command. Only gain
values greater than 1 are enforced.

For MIMO feedback loops, the specified gain profile is interpreted as a lower bound on
the smallest singular value of L.

Req = TuningGoal.MinLoopGain(location,fmin,gmin) specifies a minimum gain
profile of the form loopgain = K/s (integral action). The software chooses K such that
the gain value is gmin at the specified frequency, fmin.

Input Arguments

location

Location at which the minimum open-loop gain is constrained, specified as a string or
cell array of strings. These strings identify one or more loop-opening locations in the
control system to tune. What loop-opening locations are available depends on what kind
of system you are tuning:

• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the minimum gain
requirement applies to the resulting MIMO loop.
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loopgain

Minimum open-loop gain as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the
makeweight command. For example, the following frd model specifies a minimum gain
of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of –20 dB/dec at higher frequencies.

loopgain = frd([100 100 10],[0 1e-1 1]);

When you use an frd model to specify loopgain, the software automatically maps your
specified gain profile to a zpk model. The magnitude of this model approximates the
desired gain profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Only gain values larger than 1 are enforced. For multi-input, multi-output (MIMO)
feedback loops, the gain profile is interpreted as a lower bound on the smallest singular
value of L. For more information about singular values, see sigma.

fmin

Frequency of minimum gain gmin, specified as a scalar value in rad/s.

Use this argument to specify a minimum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmin at the specified
frequency, fmin.

gmin

Value of minimum gain occurring at fmin, specified as a scalar absolute value.

Use this argument to specify a minimum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmin at the specified
frequency, fmin.

Properties

MinGain

Minimum open-loop gain as a function of frequency, specified as a SISO zpk model.
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The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Alternatively, if you
use the fmin and gmin arguments to specify the gain profile, this property is set to K/s.
The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Use viewSpec(Req) to plot the magnitude of the open-loop minimum gain profile.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to false if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-
loop response.

Default: 'on'
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Location

Location at which minimum loop gain is constrained, specified as a string or cell array of
strings. These strings identify one or more loop-opening locations in the control system to
tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal.Sensitivity requirement.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
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system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.MinLoopGain requirement, f(x) is given by:

f x W D SDS( ) = ( )-

•

1
.

WS is the minimum loop gain profile, MaxGain. D is a diagonal scaling (for MIMO loops).
S is the sensitivity function at Location.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing
a lower bound on the open-loop transfer function, L, in a frequency band where the gain
of L is greater than 1. To see why, note that S = 1/(1 + L). For SISO loops, when |L| >>
1, |S | ≈ 1/|L|. Therefore, enforcing the open-loop minimum gain requirement, |L| >
|WS|, is roughly equivalent to enforcing |WsS| < 1. For MIMO loops, similar reasoning
applies, with ||S|| ≈ 1/σmin(L), where σmin is the smallest singular value.

For an example illustrating the constraint on S, see “Minimum Loop Gain as Constraint
on Sensitivity Function” on page 1-56.
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Examples

Minimum Loop Gain Requirement

Create a requirement that boosts the open-loop gain of a feedback loop to greater than a
specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified
by PILoop. Specify that the open-loop gain measured at that location exceed a minimum
gain of 10 (20 dB) below 0.1 rad/s, rolling off at a rate of -20 dB/dec at higher frequencies.
Use an frd model to sketch this gain profile.

loopgain = frd([10 10 0.1],[0 1e-1 10]);

Req = TuningGoal.MinLoopGain('PILoop',loopgain);

The software converts loopgain into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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The green region indicates where the requirement is violated, except that gain values
less than 1 are not enforced. Therefore, this requirement only specifies a minimum gain
at frequencies below 1 rad/s.

You can use Req as an input to looptune or systune when tuning the control system.

Integral Minimum Gain Specified as Gain Value at Single Frequency

Create a requirement that specifies a minimum loop gain profile of the form L = K / s.
The gain profile attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal.MinLoopGain('X',100,0.01);
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viewSpec(Req)

viewSpec confirms that the requirement is correctly specified. You can use this
requirement to tune a control system that has a loop-opening location identified as 'X'.
Since loop gain values less than 1 are ignored, this requirement specifies minimum gain
only below 1 rad/s, with no restriction on loop gain at higher frequency.

Minimum Loop Gain as Constraint on Sensitivity Function

Examine a minimum loop gain requirement against the tuned loop gain. A minimum loop
gain requirement is converted to a constraint on the gain of the sensitivity function at the
requirement location.
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To see this relationship between the requirement and the sensitivity function, tune the
following closed-loop system with analysis points at X1 and X2. The control system has
tunable PID controllers C1 and C2.

Create a model of the control system.

G2 = zpk([],-2,3);

G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');

C10 = ltiblock.pid('C1','pid');

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

InnerLoop = feedback(X2*G2*C20,1);

CL0 = feedback(G1*InnerLoop*C10,X1);

CL0.InputName = 'r';

CL0.OutputName = 'y';

Specify some tuning requirements, including a minimum loop gain requirement. Tune
the control system to these requirements.

Rtrack = TuningGoal.Tracking('r','y',10,0.01);

Rreject = TuningGoal.Gain('X2','y',0.1);

Rgain = TuningGoal.MinLoopGain('X2',100,10000);

Rgain.Openings = 'X1';

[CL,fSoft] = systune(CL0,[Rtrack,Rreject,Rgain]);

Final: Soft = 1.07, Hard = -Inf, Iterations = 82

Examine the TuningGoal.MinLoopGain requirement against the corresponding tuned
response.

viewSpec(Rgain,CL)



1 Class Reference

1-58

The plot shows the achieved loop gain for the loop at X2 (blue line). The plot also shows
the inverse of the achieved sensitivity function, S, at the location X2 (green line). The
inverse sensitivity function at this location is given by inv(S) = I+L. Here, L is the
open-loop point-to-point loop transfer measured at X2.

The minimum loop gain requirement Rgain is constraint on inv(S), represented in
the plot by the green shaded region. The constraint on inv(S) can be thought of as a
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minimum gain constraint on L that applies where the gain of L (or the smallest singular
value of L, for MIMO loops) is greater than 1.

Requirement without Stability Constraint on Inner Loop

Create a requirement that specifies a minimum loop gain of 20 dB (100) at 50 rad/s on
the inner loop of the following control system.

r
-

G2 y
+

-

C1

+

G1C2

X2

X1

Req = TuningGoal.MinLoopGain('X2',50,100);

Configure the requirement to apply to the loop gain of the inner loop measured with the
outer loop open.

Req.Openings = 'X2';

Setting Req.Openings tells the tuning algorithm to enforce this requirement with loops
open at the specified location.

By default, tuning using TuningGoal.MinLoopGain imposes a stability requirement
as well as the minimum loop gain requirement. Practically, in some control systems
it is not possible to achieve a stable inner loop. When this occurs, remove the stability
requirement for the inner loop by setting the Stabilize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

See Also
systune (for slTuner) | TuningGoal.Gain | TuningGoal.MaxLoopGain
| TuningGoal.Margins | slTuner | looptune | systune | looptune (for
slTuner) | viewSpec | evalSpec | TuningGoal.LoopShape | sigma
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How To
• “Loop Shape and Stability Margin Specifications”
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
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TuningGoal.MaxLoopGain class

Package: TuningGoal

Maximum loop gain constraint for control system tuning

Description

Use the TuningGoal.MaxLoopGain object to enforce a maximum loop gain and desired
roll-off in a particular frequency band. Use this requirement with control system tuning
commands such as systune or looptune.

This requirement imposes a maximum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the maximum open-loop gain as a
function of frequency (a maximum gain profile). For MIMO feedback loops, the specified
gain profile is interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum
gain constraint on the complementary sensitivity function, T) = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed line) and
a resulting tuned loop gain, L (blue line). The pink region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much smaller
than 1, imposing a maximum gain on T is a good proxy for a maximum open-loop gain.
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TuningGoal.MaxLoopGain and TuningGoal.MinLoopGain specify only high-gain
or low-gain constraints in certain frequency bands. When you use these requirements,
systune and looptune determine the best loop shape near crossover. When the loop
shape near crossover is simple or well understood (such as integral action), you can use
TuningGoal.LoopShape to specify that target loop shape.

Construction

Req = TuningGoal.MaxLoopGain(location,loopgain) creates a tuning
requirement for limiting the gain of a SISO or MIMO feedback loop. The requirement
limits the open-loop frequency response measured at the specified locations to the
maximum gain profile specified by loopgain. You can specify the maximum gain profile as
a smooth transfer function or sketch a piecewise error profile using an frd model or the
makeweight command. Only gain values smaller than 1 are enforced.

Req = TuningGoal.MaxLoopGain(location,fmax,gmax) specifies a maximum gain
profile of the form loopgain = K/s (integral action). The software chooses K such that
the gain value is gmax at the specified frequency, fmax.
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Input Arguments

location

Location at which the maximum open-loop gain is constrained, specified as a string or
cell array of strings. These strings identify one or more loop-opening locations in the
control system to tune. What loop-opening locations are available depends on what kind
of system you are tuning:

• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the maximum gain
requirement applies to the resulting MIMO loop.

loopgain

Maximum open-loop gain as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the
makeweight command. For example, the following frd model specifies a maximum gain
of 1 (0 dB) at 1 rad/s, rolling off at a rate of –20 dB/dec up to 10 rad/s, and a rate of –40
dB/dec at higher frequencies.

loopgain = frd([1 1e-1 1e-3],[1 10 100]);

bodemag(loopgain)
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When you use an frd model to specify loopgain, the software automatically maps your
specified gain profile to a zpk model. The magnitude of this model approximates the
desired gain profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Only gain values smaller than 1 are enforced. For multi-input, multi-output (MIMO)
feedback loops, the gain profile is interpreted as a minimum roll-off requirement, which
is an upper bound on the largest singular value of L. For more information about singular
values, see sigma.

fmax

Frequency of maximum gain gmax, specified as a scalar value in rad/s.

Use this argument to specify a maximum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmax at the specified
frequency, fmax.
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gmax

Value of maximum gain occurring at fmax, specified as a scalar absolute value.

Use this argument to specify a maximum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmax at the specified
frequency, fmax.

Properties

MaxGain

Maximum open-loop gain as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Alternatively, if you
use the fmax and gmax arguments to specify the gain profile, this property is set to K/s.
The software chooses K such that the gain value is gmax at the specified frequency, fmax.

Use viewSpec(Req) to plot the magnitude of the open-loop maximum gain profile.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
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When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to false if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-
loop response.

Default: 'on'

Location

Location at which maximum loop gain is constrained, specified as a string or cell array of
strings. These strings identify one or more loop-opening locations in the control system to
tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal.Sensitivity requirement.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN
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Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.MaxLoopGain requirement, f(x) is given by:



1 Class Reference

1-68

f x W D TDT( ) = ( )-

•

1
.

WT is the reciprocal of the maximum loop gain profile, MaxGain. D is a diagonal scaling
(for MIMO loops). T is the complementary sensitivity function at Location.

Although T is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing
an upper bound on the open-loop transfer, L, in a frequency band where the gain of L is
less than one. To see why, note that T = L/(I + L). For SISO loops, when |L| << 1, |T|
≈ |L|. Therefore, enforcing the open-loop maximum gain requirement, |L| < 1/|WT|, is
roughly equivalent to enforcing |WTT| < 1. For MIMO loops, similar reasoning applies,
with ||T|| ≈ σmax(L), where σmax is the largest singular value.

Examples

Maximum Loop Gain Requirement

Create a requirement that limits the maximum open-loop gain of a feedback loop to a
specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified
by PILoop. Limit the open-loop gain measured at that location to 1 (0 dB) at 1 rad/
s, rolling off at a rate of -20 dB/dec up to 10 rad/s, and a rate of -40 dB/dec at higher
frequencies. Use an frd model to sketch this gain profile.

loopgain = frd([1 1e-1 1e-3],[1 10 100]);

Req = TuningGoal.MaxLoopGain('PILoop',loopgain);

The software converts loopgain into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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The yellow region indicates where the requirement is violated, except that gain values
greater than 1 are not enforced. Therefore, this requirement only specifies minimum roll-
off rates at frequencies above 1 rad/s.

You can use Req as an input to looptune or systune when tuning the control system.

Integral Loop Gain Specified as Gain Value at Single Frequency

Create a requirement that specifies a maximum loop gain of the form L = K / s . The
maximum gain attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal.MaxLoopGain('X',100,0.01);
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viewSpec(Req)

viewSpec confirms that the requirement is correctly specified. You can use this
requirement to tune a control system that has a loop-opening location identified as 'X'.
Since loop gain values greater than 1 are ignored, this requirement specifies a rolloff of
20 dB/decade above 1 rad/s, with no restriction on loop gain below that frequency.

Requirement without Stability Constraint on Inner Loop

Create a requirement that specifies a maximum loop gain of –20 dB (0.01) at 100 rad/s on
the inner loop of the following control system.
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Req = TuningGoal.MaxLoopGain('X2',100,0.01);

Configure the requirement to apply to the loop gain of the inner loop measured with the
outer loop open.

Req.Openings = 'X2';

Setting Req.Openings tells the tuning algorithm to enforce this requirement with loops
open at the specified location.

By default, tuning using TuningGoal.MaxLoopGain imposes a stability requirement
as well as the maximum loop gain requirement. Practically, in some control systems
it is not possible to achieve a stable inner loop. When this occurs, remove the stability
requirement for the inner loop by setting the Stabilize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

See Also
looptune (for slTuner) | TuningGoal.Gain | TuningGoal.MinLoopGain |
TuningGoal.Margins | slTuner | looptune | systune | systune (for slTuner)
| viewSpec | evalSpec | TuningGoal.LoopShape | sigma

How To
• “Loop Shape and Stability Margin Specifications”
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
• “MIMO Control of Diesel Engine”
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• “Tuning of a Two-Loop Autopilot”
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TuningGoal.Overshoot class
Package: TuningGoal

Overshoot constraint for control system tuning

Description

Use the TuningGoal.Overshoot object to limit the overshoot in the step response from
specified inputs to specified outputs of a control system. Use this requirement for control
system tuning with tuning commands such as systune or looptune.

Construction

Req = TuningGoal.Overshoot(inputname,outputname,maxpercent) creates
a tuning requirement for limiting the overshoot in the step response between the
specified signal locations. The scalar maxpercent specifies the maximum overshoot as a
percentage.

When you use TuningGoal.Overshoot for tuning, the software maps overshoot
constraints to peak gain constraints assuming second-order system characteristics.
Therefore, the mapping is only approximate for higher-order systems. In addition, this
requirement cannot reliably reduce the overshoot below 5%.

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
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• Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use



 TuningGoal.Overshoot class

1-75

getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

maxpercent

Maximum percent overshoot, specified as a scalar value. For example, the following code
specifies a maximum 5% overshoot in the step response from 'r' to 'y'.

Req = TuningGoal.Overshoot('r','y',5);

TuningGoal.OverShoot cannot reliably reduce the overshoot below 5%.

Properties

MaxOvershoot

Maximum percent overshoot, specified as a scalar value. For example, the scalar value
5 means the overshoot should not exceed 5%. The initial value of the MaxOvershoot
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property is set by the maxpercent input argument when you construct the requirement
object.

InputScaling

Reference signal scaling, specified as a vector of positive real values.

For a MIMO tuning requirement, when the choice of units results in a mix of small
and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {'y1','y2'} track
reference signals {'r1','r2'}. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less than
0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.

Default: []

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
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initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.



1 Class Reference

1-78

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Examples

Overshoot Constraint

Create a requirement that limits the overshoot of the step response from signals named
'r' to 'y' in a control system to 8 percent.

Req = TuningGoal.Overshoot('r','y',8);

You can use Req as an input to looptune or systune when tuning the control system.

Configure the requirement to apply only to the second model in a model array to tune.
Also, configure the requirement to be evaluated with a loop open in the control system.

Req.Models = 2;

Req.Openings = 'OuterLoop';

Setting the Models property restricts application of the requirement to the second model
in an array, when you use the requirement to tune an array of control system models.
Setting the Openings property specifies that requirement is evaluated with a loop
opened at the location in the control system identified by 'OuterLoop'.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal.Overshoot, f(x) reflects the relative satisfaction or violation of the
goal. The percent deviation from f(x) = 1 roughly corresponds to the percent deviation
from the specified overshoot target. For example, f(x) = 1.2 means the actual overshoot
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exceeds the target by roughly 20%, and f(x) = 0.8 means the actual overshoot is about
20% less than the target.

TuningGoal.Overshoot uses T
•

 as a proxy for the overshoot, based on second-order
model characteristics. Here, T is the closed-loop transfer function that the requirement
constrains. The overshoot is tuned in the range from 5% ( T

•

 = 1) to 100% ( T
•

).
TuningGoal.Overshoot is ineffective at forcing the overshoot below 5%.

See Also
systune (for slTuner) | TuningGoal.Gain | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | TuningGoal.Sensitivity | slTuner

How To
• “Time-Domain Specifications”
• “Multi-Loop PID Control of a Robot Arm”
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TuningGoal.Poles class

Package: TuningGoal

Constraint on control system dynamics

Description

Use the TuningGoal.Poles object to specify a tuning requirement for constraining
the closed-loop dynamics of a control system or of specific feedback loops within the
control system. You can use this requirement for control system tuning with tuning
commands, such as systune or looptune. A TuningGoal.Poles requirement can
ensure a minimum decay rate or minimum damping of the poles of the control system or
loop. The requirement can also eliminate fast dynamics in the tuned system.

Construction

Req = TuningGoal.Poles(mindecay,mindamping,maxfreq) creates a default
template for constraining the closed-loop pole locations. The minimum decay rate,
minimum damping constant, and maximum natural frequency define a region of the
complex plane in which poles of the component must lie. Set mindecay = 0, mindamping
= 0, or maxfreq = Inf to skip any of the three constraints.

Req = TuningGoal.Poles(location,mindecay,mindamping,maxfreq) constrains
the poles of the sensitivity function measured at a specified location in the control
system. (See getSensitivity for information about sensitivity functions.) Use this
syntax to narrow the scope of the requirement to a particular feedback loop.

If you want to constrain the poles of the system with one or more feedback loops opened,
set the Openings property. To limit the enforcement of this requirement to poles having
natural frequency within a specified frequency range, set the Focus property. (See
“Properties” on page 1-82.)
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Input Arguments

mindecay

Minimum decay rate of poles of tunable component, specified as a nonnegative scalar
value in the frequency units of the control system model you are tuning.

When you tune the control system using this requirement, the closed-loop poles of the
control system are constrained to satisfy:

• Re(s) < -mindecay, for continuous-time systems.
• log(|z|) < -mindecay*Ts, for discrete-time systems with sample time Ts.

Set mindecay = 0 to impose no constraint on the decay rate.

mindamping

Desired minimum damping ratio of the closed-loop poles, specified as a value between 0
and 1.

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -
mindamping*|s|. In discrete time, the damping ratio is computed using s=log(z)/Ts.

Set mindamping = 0 to impose no constraint on the damping ratio.

maxfreq

Desired maximum natural frequency of closed-loop poles, specified as a scalar value in
the frequency units of the control system model you are tuning.

Poles are constrained to satisfy |s| < maxfreq for continuous time, or |log(z)| <
maxfreq*Ts for discrete-time systems with sample time Ts. This constraint prevents
fast dynamics in the closed-loop system.

Set maxfreq = Inf to impose no constraint on the natural frequency.

location

Location at which poles are assessed, specified as a string or cell array of strings. When
you use this input, the requirement constrains the poles of the sensitivity function
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measured at this location. (See getSensitivity for information about sensitivity
functions.) What locations are available depends on what kind of system you are tuning:

• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array, then the sensitivity requirement applies to the MIMO loop.

Properties

MinDecay

Minimum decay rate of closed-loop poles of tunable component, specified as a positive
scalar value in the frequency units of the control system you are tuning. The initial value
of this property is set by the mindecay input argument.

When you tune the control system using this requirement, closed-loop poles are
constrained to satisfy Re(s) < -MinDecay for continuous-time systems, or log(|z|)
< -MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal.Poles requirement. Change
the minimum decay rate to 0.001:

Req.MinDecay = 0.001;

Default: 0
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MinDamping

Desired minimum damping ratio of closed-loop poles, specified as a value between 0 and
1. The initial value of this property is set by the mindamping input argument.

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -
MinDamping*|s|. In discrete time, the damping ratio is computed using s=log(z)/Ts.

Default: 0

MaxFrequency

Desired maximum natural frequency of closed-poles, specified as a scalar value in the
frequency units of the control system model you are tuning. The initial value of this
property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time
systems, or |log(z)| < maxfreq*Ts for discrete-time systems with sample time Ts.
This constraint prevents fast dynamics in the tuned control system.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal.ControllerPoles
requirement. Change the maximum frequency to 1000:

Req.MaxFrequency = 1000;

Default: Inf

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.
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Location

Location at which poles are assessed, specified as a string or cell array of strings that
identify one or more analysis-point locations in the control system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal.Poles requirement.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.
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Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Examples

Constrain Closed-Loop Dynamics of Specified Loop of System to Tune

Create a requirement that constrains the inner loop of the following control system to be
stable and free of fast dynamics. Specify that the constraint is evaluated with the outer
loop open.

Create a model of the system. To do so, specify and connect the numeric plant models,
G1 and G2, and the tunable controllers C1 and C2. Also, create and connect the
AnalysisPoint blocks, AP1 and AP2, which mark points of interest for analysis and
tuning.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

AP1 = AnalysisPoint('AP1');
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AP2 = AnalysisPoint('AP2');

T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the dynamics of the closed-loop poles.
Restrict the poles of the inner loop to the region , .

Req = TuningGoal.Poles(0.1,0,30);

Setting the minimum damping to zero imposes no constraint on the damping constants
for the poles.

Specify that the constraint on the tuned system poles is applied with the outer loop open.

Req.Openings = 'AP1';

When you tune T using this requirement, the constraint applies to the poles of the entire
control system evaluated with the loop open at 'AP1'. In other words, the poles of the
inner loop plus the poles of C1 and G1 are all considered.

After you tune T, you can use viewSpec to validate the tuned control system against the
requirement.

Constrain Dynamics of Specified Feedback Loop

Create a requirement that constrains the inner loop of the system of the previous
example to be stable and free of fast dynamics. Specify that the constraint is evaluated
with the outer loop open.

Create a tuning requirement that constrains the dynamics of the inner feedback loop,
the loop identified by AP2. Restrict the poles of the inner loop to the region ,

.

Req = TuningGoal.Poles('AP2',0.1,0,30);

Specify that the constraint on the tuned system poles is applied with the outer loop open.

Req.Openings = 'AP1';

When you tune T using this requirement, the constraint applies only to the poles of
the inner loop, evaluated with the outer loop open. In this case, since G1 and C1 do not
contribute to the sensitivity function at AP2 when the outer loop is open, the requirement
constrains only the poles of G2 and C2.
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After you tune T, you can use viewSpec to validate the tuned control system against the
requirement.

Tips

• TuningGoal.Poles restricts the closed-loop dynamics of the tuned control system.
To constrain the dynamics or ensure the stability of a single tunable component, use
TuningGoal.ControllerPoles.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal.Poles, f(x) reflects the relative satisfaction or violation of the goal.
For example, if you attempt to constrain the closed-loop poles of a feedback loop to a
minimum damping of ζ = 0.5, then:

• f(x) = 1 means the smallest damping among the constrained poles is ζ = 0.5 exactly.
• f(x) = 1.1 means the smallest damping ζ = 0.5/1.1 = 0.45, roughly 10% less than the

target.
• f(x) = 0.9 means the smallest damping ζ = 0.5/0.9 = 0.55, roughly 10% better than the

target.

See Also
looptune | looptune (for slTuner) | TuningGoal.ControllerPoles |
systune | systune (for slTuner) | viewSpec | evalSpec | ltiblock.tf |
ltiblock.ss

How To
• “System Dynamics Specifications”
• “Digital Control of Power Stage Voltage”
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• “Multi-Loop Control of a Helicopter”
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TuningGoal.Rejection class

Package: TuningGoal

Disturbance rejection requirement for control system tuning

Description

Use the TuningGoal.Rejection object to specify the minimum attenuation of a
disturbance injected at a specified location in a control system. This requirement helps
you tune control systems with tuning commands such as systune or looptune.

When you use a TuningGoal.Rejection requirement, the software attempts to tune
the system so that the attenuation of a disturbance at the specified location exceeds the
minimum attenuation factor you specify. This attenuation factor is the ratio between the
open- and closed-loop sensitivities to the disturbance and is a function of frequency. You
can achieve disturbance attenuation only inside the control bandwidth. The loop gain
must be larger than one for the disturbance to be attenuated (attenuation factor > 1).

Construction

Req = TuningGoal.Rejection(distloc,attfact) creates a tuning requirement
for rejecting a disturbance entering at distloc. This requirement constrains the minimum
disturbance attenuation factor to the frequency-dependent value, attfact.

Input Arguments

distloc

Disturbance location, specified as a string or a cell array of strings for vector-valued
signals.

• If you are using the requirement to tune a Simulink model of a control system,
then distloc can include any signal identified as an analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to identify such
locations in the interface.
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• If you are using the requirement to tune a generalized state-space model (genss) with
systune or looptune, then inputname can include any AnalysisPoint channel
in the model. For example, if you are tuning a control system model, T, that contains
an AnalysisPoint block with a channel named X, then distloc can include X. The
disturbance location is the implied input associated with the analysis point:

attfact

Attenuation factor as a function of frequency, specified as a numeric LTI model.

The TuningGoal.Rejection requirement constrains the minimum disturbance
attenuation to the frequency-dependent value attfact. You can specify attfact as a smooth
transfer function (tf , zpk, or ss model). Alternatively, you can specify a piecewise
gain profile using a frd model. For example, the following code specifies an attenuation
factor of 100 (40 dB) below 1 rad/s, gradually dropping to 1 (0 dB) past 10 rad/s, for a
disturbance injected at u.

attfact = frd([100 100 1 1],[0 1 10 100]); 

Req = TuningGoal.Rejection('u',attfact);

bodemag(attfact)
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When you use an frd model to specify attfact, the gain profile is automatically mapped
onto a zpk model. The magnitude of this zpk model approximates the desired gain
profile. Use viewSpec(Req) to visualize the resulting attenuation profile.

Properties

MinAttenuation

Minimum disturbance attenuation as a function of frequency, expressed as a SISO zpk
model.

The software automatically maps the attfact input argument to a zpk model. The
magnitude of this zpk model approximates the desired attenuation factor and is stored
in the MinAttenuation property. Use viewSpec(Req) to plot the magnitude of
MinAttenuation.
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Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

For multiloop or MIMO disturbance rejection requirements, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-
loop transfer function. Set LoopScaling to 'off' to disable such scaling and shape the
unscaled open-loop response.

Default: 'on'

Location

Location of disturbance, specified as a string or cell array of strings that identify
model inputs or analysis-point locations marked in the model. The initial value of
the Location property is set by the distloc input argument when you construct the
requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:
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Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the requirement is converted into a normalized scalar value f(x). In this
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case, x is the vector of free (tunable) parameters in the control system. The parameter
values are adjusted automatically to minimize f(x) or drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Rejection requirement, f(x) is given by:

f x W j S j x( ) = ( ) ( )
Œ

max , .
w

w w
W

W(jω) is the rational transfer function of the MinAttenuation property. This transfer
function’s magnitude approximates the minimum disturbance attenuation that you
specify for the requirement. S(jω,x) is the closed-loop sensitivity function measured at the
disturbance location. Ω is the frequency interval over which the requirement is enforced,
specified in the Focus property.

Examples

Constant Minimum Attenuation in Frequency Band

Create a tuning requirement that enforces a attenuation of at least a factor of 10 between
0 and 5 rad/s. The requirement applies to a disturbance entering a control system at a
point identified as 'u'.

Req = TuningGoal.Rejection('u',10);

Req.Name = 'Rejection spec';

Req.Focus = [0 5]

Frequency-Dependent Attenuation Profile

Create a tuning requirement that enforces an attenuation factor of at least 100 (40 dB)
below 1 rad/s, gradually dropping to 1 (0 dB) past 10 rad/s. The requirement applies to a
disturbance entering a control system at a point identified as 'u'.

attfact = frd([100 100 1 1],[0 1 10 100]);

Req = TuningGoal.Rejection('u',attfact);

These commands use a frd model to specify the minimum attenuation profile as a
function of frequency. The minimum attenuation of 100 below 1 rad/s, together with the
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minimum attenuation of 1 at the frequencies of 10 and 100 rad/s, specifies the desired
rolloff of the requirement.

attfact is converted into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)

The yellow region indicates where the requirement is violated.

See Also
systune (for slTuner) | TuningGoal.Tracking | looptune | viewSpec |
systune | looptune (for slTuner) | TuningGoal.LoopShape | slTuner
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How To
• “Time-Domain Specifications”
• “Decoupling Controller for a Distillation Column”
• “Tuning of a Two-Loop Autopilot”
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TuningGoal.Sensitivity class

Package: TuningGoal

Sensitivity requirement for control system tuning

Description

Use the TuningGoal.Sensitivity object to limit the sensitivity of a feedback loop to
disturbances. Constrain the sensitivity to be smaller than one at frequencies where you
need good disturbance rejection. Use this requirement for control system tuning with
tuning commands such as systune or looptune.

Construction

Req = TuningGoal.Sensitivity(location,maxsens) creates a tuning
requirement for limiting the sensitivity to disturbances entering a feedback loop at the
specified location. maxsens specifies the maximum sensitivity as a function of frequency.
You can specify the maximum sensitivity profile as a smooth transfer function or sketch
a piecewise error profile using an frd model or the makeweight command.

See getSensitivity for more information about sensitivity functions.)

Input Arguments

location

Location at which the sensitivity to disturbances is constrained, specified as a string or
cell array of strings that identify one or more locations in the control system to tune.
What locations are available depends on what kind of system you are tuning:

• If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.
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• If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);

C = ltiblock.pid('C','pi');

T = feedback(G*AP*C,1);

You can use the string 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array, then the sensitivity requirement applies to the MIMO loop.

maxsens

Maximum sensitivity to disturbances as a function of frequency.

You can specify maxsens as a smooth SISO transfer function (tf, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the
makeweight command. For example, the following frd model specifies a maximum
sensitivity of 0.01 (–40 dB) at 1 rad/s, increasing to 1 (0 dB) past 50 rad/s.

maxsens = frd([0.01 1 1],[1 50 100]);

bodemag(maxsens)

ylim([-45,5])
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When you use an frd model to specify maxsens, the software automatically maps your
specified gain profile to a zpk model whose magnitude approximates the desired gain
profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Properties

MaxSensitivity

Maximum sensitivity as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument maxsens onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model MaxSensitivity.



1 Class Reference

1-100

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled
sensitivity function.

Default: 'on'

Location

Location of disturbance, specified as a string or cell array of strings that identify
analysis-point locations marked in the model. The initial value of the Location property
is set by the location input argument when you construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:
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Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
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where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Sensitivity requirement, f(x) is given by:

f x S s x( ) = ( )
•

1

MaxSensitivity
, .

S(s,x) is the sensitivity function of the control system at location.

Examples

Disturbance Sensitivity at Plant Input

Create a requirement that limits the sensitivity to disturbance at the plant input of the
following control system. The control system contains an AnalysisPoint block at the
plant input named 'X'.

r
−

GC y
+

X

Specify a maximum sensitivity of 0.01 (–40 dB) at 1 rad/s, increasing to 1 (0 dB) past 10
rad/s. Use an frd model to sketch this target sensitivity.

maxsens = frd([0.01 1 1],[1 10 100]);

Req = TuningGoal.Sensitivity('X',maxsens);

The software converts maxsens into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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The yellow region indicates where the requirement is violated.

You can use Req as an input to looptune or systune when tuning the control system.

Requirement with Limited Frequency Range and Model Application

Create a requirement that specifies a maximum sensitivity of 0.1 (10%) at frequencies
below 5 rad/s. Configure the requirement to apply only to the second and third plant
models.

Req = TuningGoal.Sensitivity('u',0.1);

Req.Focus = [0 5];

Req.Models = [2 3];
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You can use Req as an input to looptune or systune when tuning a control system that
has an analysis point called 'u'. Setting the Focus property limits the application of the
requirement to frequencies between 0 and 5 rad/s. Setting the Models property restricts
application of the requirement to the second and third models in an array, when you use
the requirement to tune an array of control system models.

See Also
looptune (for slTuner) | TuningGoal.Gain | TuningGoal.Rejection |
TuningGoal.MaxLoopGain | looptune | systune | systune (for slTuner) |
viewSpec | evalSpec | TuningGoal.LoopShape | TuningGoal.MinLoopGain |
slTuner

How To
• “Frequency-Domain Specifications”
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TuningGoal.StepRejection class

Package: TuningGoal

Step disturbance rejection requirement for control system tuning

Description

Use the TuningGoal.StepRejection object to specify how a step disturbance injected
at a specified location in your control system affects the signal at a specified output
location. Use this requirement with control system tuning commands such as systune or
looptune.

You can specify the desired response in time-domain terms of peak value, settling time,
and damping ratio. Alternatively, you can specify the response as a stable reference
model having DC-gain. In that case, the tuning goal is to reject the disturbance as well as
or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use
TuningGoal.Rejection.

Construction

Req = TuningGoal.StepRejection(inputname,outputname,refsys) creates
a tuning requirement that constrains how a step disturbance injected at a location
inputname affects the response at outputname. The requirement is that the disturbance
be rejected as well as or better than the reference system. inputname and outputname
can describe a SISO or MIMO response of your control system. For MIMO responses, the
number of inputs must equal the number of outputs.

Req = TuningGoal.StepRejection(inputname,outputname,peak,tSettle)

specifies an oscillation-free response in terms of a peak value and a settling time.

Req = TuningGoal.StepRejection(inputname,outputname,peak,tSettle,

zeta) allows for damped oscillations with a damping ratio of at least zeta.
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Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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refsys

Reference system for target step rejection, specified as a SISO dynamic system model,
such as a tf, zpk, or ss model. refsys must be stable and proper, and must have zero
DC gain. This restriction ensures perfect rejection of the steady-state disturbance.

refsys can be continuous or discrete. If refsys is discrete, it can include time delays
which are treated as poles at z = 0.

For best results, refsys and the open-loop response from the disturbance to the output
should have similar gains at the frequency where the reference model gain peaks. You
can check the peak gain and peak frequency using getPeakGain. For example:

[gmax,fmax] = getPeakGain(refsys);

Use getIOTransfer to extract the open-loop response from the disturbance to the
output.

peak

Peak absolute value of target response to disturbance, specified as a scalar value.

tSettle

Target settling time of the response to disturbance, specified as a positive scalar value, in
the time units of the control system you are tuning.

zeta

Minimum damping ratio of oscillations in the response to disturbance, specified as a
value between 0 and 1.

Default: 1

Properties

ReferenceModel

Reference system for target response to step disturbance, specified as a SISO (zpk)
model. The step response of this model specifies how the output signals specified by
outputname should respond to the step disturbance at inputname.
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If you use the refsys input argument to create the tuning requirement, then the value of
ReferenceModel is zpk(refsys).

If you use the peak, tSample, and zeta input arguments, then ReferenceModel is a zpk
representation of the first-order or second-order transfer function whose step response
has the specified characteristics.

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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Input

Names of disturbance input locations, specified as a string or cell array of strings.
This property is populated by the inputname argument when you create the tuning
requirement.

Output

Names of locations at which response to step disturbance is measured, specified as a
string or cell array of strings. This property is populated by the outputname argument
when you create the tuning requirement.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
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system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms
When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

The TuningGoal.StepRejection requirement aims to keep the gain from disturbance
to output below the gain of the reference model. The scalar value of the requirement f(x)
is given by:

f x
T s x

T sref

( ) =
( )

( )
•

,

.

T(s,x) is the closed-loop transfer function from Input to Output. Tref(s) is the reference
model. ◊

•

 denotes the H∞ norm (see norm).

Examples

Specify First-Order or Second-Order Step Disturbance Response Characteristics

Create a requirement that specifies the step disturbance response in terms of peak time-
domain response, settling time, and damping of oscillations.
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Suppose you want the response at 'y' to a disturbance injected at 'd' to
never exceed an absolute value of 0.25, and to settle within 5 seconds. Create a
TuningGoal.StepRejection requirement that captures these specifications and also
specifies non-oscillatory response.

Req1 = TuningGoal.StepRejection('d','y',0.25,5);

Omitting an explicit value for the damping ratio, zeta, is equivalent to setting zeta = 1.
Therefore, Req specifies a non-oscillatory response. The software converts the peak value
and settling time into a reference transfer function whose step response has the desired
time-domain profile. This transfer function is stored in the ReferenceModel property of
Req.

Req1.ReferenceModel

ans =

 

   0.92883 s

  -----------

  (s+1.367)^2

 

Continuous-time zero/pole/gain model.

Confirm the target response by displaying Req.

figure()

viewSpec(Req1)
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Suppose your application can tolerate oscillations provided the damping ratio is less than
0.4. Create a requirement that specifies this disturbance response.

Req2 = TuningGoal.StepRejection('d','y',0.25,5,0.4);

figure()

viewSpec(Req2)
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Step Disturbance Rejection with Custom Reference Model

Create a requirement that specifies the step disturbance response as a transfer function.

Suppose you want the response to a disturbance injected at an analysis point d in your
control system and measured at a point 'y' to be rejected at least as well as the transfer
function

Create a TuningGoal.StepRejection requirement.

H = tf([1 0],[1 2 1]);
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Req = TuningGoal.StepRejection('d','y',H);

Display the requirement.

viewSpec(Req)

The plot displayed by viewSpec shows the step response of the specified transfer
function. This response is the target time-domain response to disturbance.

See Also
TuningGoal.Gain | TuningGoal.LoopShape | evalSpec | looptune | looptune
(for slTuner) | slTuner | systune | systune (for slTuner) | viewSpec
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More About
• “Time-Domain Specifications”
• “Tuning Control Systems with SYSTUNE”
• “Tuning Control Systems in Simulink”
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TuningGoal.StepTracking class
Package: TuningGoal

Step response requirement for control system tuning

Description

Use the TuningGoal.StepTracking object to specify a target step response from
specified inputs to specified outputs of a control system. Use this requirement with
control system tuning commands such as systune or looptune.

Construction

Req = TuningGoal.StepTracking(inputname,outputname,refsys) creates
a tuning requirement that constrains the step response between the specified signal
locations to match the step response of a stable reference system, refsys. The constraint
is satisfied when the relative difference between the tuned and target responses falls
within a tolerance specified by the RelGap property of the requirement (see “Properties”
on page 1-121). inputname and outputname can describe a SISO or MIMO response of
your control system. For MIMO responses, the number of inputs must equal the number
of outputs.

Req = TuningGoal.StepTracking(inputname,outputname,tau) specifies the
desired step response as a first-order response with time constant tau:

Req.ReferenceModel
tau

tau
=

+

1

1

/

/
.

s

Req = TuningGoal.StepTracking(inputname,outputname,tau,overshoot)

specifies the desired step response as a second-order response with natural period tau,
natural frequency 1/tau, and percent overshoot overshoot:

Req.ReferenceModel
tau

zeta tau tau
=

( )

+ ( ) + ( )

1

2 1

2

2 2

/

/ /
.

s s



1 Class Reference

1-118

The damping is given by zeta = cos(atan2(pi,-log(overshoot/100))).

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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refsys

Reference system for target step response, specified as a dynamic system model, such as
a tf, zpk, or ss model. refsys must be stable and must have DC gain of 1 (zero steady-
state error).

refsys can be continuous or discrete. If refsys is discrete, it can include time delays
which are treated as poles at z = 0.

refsys can be MIMO, provided that it is square and that its DC singular value (sigma)
is 1. If refsys is a MIMO model, then its number of inputs and outputs must match the
dimensions of inputname and outputname.

For best results, refsys should also include intrinsic system characteristics such as non-
minimum-phase zeros (undershoot).

tau

Time constant or natural period of target step response, specified as a positive scalar.

If you use the syntax Req =
TuningGoal.StepTracking(inputname,outputname,tau) to specify a first-order
target response, then tau is the time constant of the response decay. In that case, the
target is the step response of the system given by:

Req.ReferenceModel
tau

tau
=

+

1

1

/

/
.

s

If you use the syntax Req =
TuningGoal.StepTracking(inputname,outputname,tau,overshoot) to specify
a second-order target response, then tau is the inverse of the natural frequency of the
response. In that case, the target is the step response of the system given by:

Req.ReferenceModel
tau

zeta tau tau
=

( )

+ ( ) + ( )

1

2 1

2

2 2

/

/ /
.

s s

The damping of the system is given by zeta = cos(atan2(pi,-
log(overshoot/100))).

overshoot

Percent overshoot of target step response, specified as a scalar value in the range (0,100).
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Properties

ReferenceModel

Reference system for target step response, specified as a SISO or MIMO state-space (ss)
model. When you use the requirement to tune a control system, the step response from
inputname to outputname is tuned to match this target response to within the tolerance
specified by the RelGap property.

If you use the refsys input argument to create the tuning requirement, then the value of
ReferenceModel is ss(refsys).

If you use the tau or tau and overshoot input arguments, thenReferenceModel is a
state-space representation of the corresponding first-order or second-order transfer
function.

ReferenceModel must be stable and have unit DC gain (zero steady-state error). For
best results, ReferenceModel should also include intrinsic system characteristics such
as non-minimum-phase zeros (undershoot).

RelGap

Maximum relative matching error, specified as a positive scalar value. This property
specifies the matching tolerance as the maximum relative gap between the target and
actual step responses. The relative gap is defined as:

gap =
( ) - ( )

- ( )

y t y t

y t

ref

ref

2

2
1

.

y(t) – yref(t) is the response mismatch, and 1 – yref(t) is the step-tracking error of the target
model. ◊

2
 denotes the signal energy (2-norm).

Increase the value of RelGap to loosen the matching tolerance.

Default: 0.1

InputScaling

Reference signal scaling, specified as a vector of positive real values.
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For a MIMO tuning requirement, when the choice of units results in a mix of small
and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {'y1','y2'} track
reference signals {'r1','r2'}. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less than
0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.

Default: []

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.
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Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []
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Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.StepTracking requirement, f(x) is given by:

f x

T s x
s

s
I

( ) =

( ) -

-( )

,

.

1

1
2

2

ReferenceModel

RelGap ReferenceModel

T(s,x) is the closed-loop transfer function from Input to Output with parameter values x.
◊

2
 denotes the H2 norm (see norm).

Examples

Step Response Requirement with Specified Tolerance

Create a requirement for the step response from a signal named 'r' to a signal named
'y'. Constrain the step response to match the transfer function H = 10/(s+10), but allow
20% relative variation between the target the tuned responses.

H = tf(10,[1 10]);

Req = TuningGoal.StepResp('r','y',H);

By default, this requirement allows a relative gap of 0.1 between the target and
tuned responses. To change the relative gap to 20%, set the RelGap property of the
requirement.

Req.RelGap = 0.2;

Examine the requirement.

viewSpec(Req);
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The dashed line shows the target step response specified by this requirement. You can
use this requirement to tune a control system model, T, that contains valid input and
output locations named 'r' and 'y'. If you do so, the command viewSpec(Req,T)
plots the achieved step response from 'r' to 'y' for comparison to the target response.

First-Order Step Response With Known Time Constant

Create a requirement that specifies a first-order step response with time constant of
5 seconds. Create the requirement for the step response from a signal named 'r' to a
signal named 'y'.

Req = TuningGoal.StepResp('r','y',5);
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When you use this requirement to tune a control system model, T, the time constant 5
is taken to be expressed in the prevailing units of the control system. For example, if T
is a genss model and the property T.TimeUnit is 'seconds', then this requirement
specifies a target time constant of 5 seconds for the response from the input 'r' to the
output 'y' of 'T'.

The specified time constant is converted into a reference state-space model stored in the
ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

refsys =

 

    0.2

  -------

  s + 0.2

 

Continuous-time transfer function.

As expected, refsys is a first-order model.

Examine the requirement. The viewSpec command displays the target response, which
is the step response of the reference model.

viewSpec(Req);
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The dashed line shows the target step response specified by this requirement, a first-
order response with a time constant of five seconds.

Second-Order Step Response With Known Natural Period and Overshoot

Create a requirement that specifies a second-order step response with a natural period
of 5 seconds, and a 10% overshoot. Create the requirement for the step response from a
signal named 'r' to a signal named 'y'.

Req = TuningGoal.StepResp('r','y',5,10);

When you use this requirement to tune a control system model, T, the natural period 5
is taken to be expressed in the prevailing units of the control system. For example, if T
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is a genss model and the property T.TimeUnit is 'seconds', then this requirement
specifies a target natural period of 5 seconds for the response from the input 'r' to the
output 'y' of 'T'.

The specified parameters of the response is converted into a reference state-space model
stored in the ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

refsys =

 

          0.04

  ---------------------

  s^2 + 0.2365 s + 0.04

 

Continuous-time transfer function.

As expected, refsys is a second-order model.

Examine the requirement. The viewSpec command displays the target response, which
is the step response of the reference model.

viewSpec(Req);
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The dashed line shows the target step response specified by this requirement, a second-
order response with 10% overshoot and a natural period of five seconds.

Requirement with Limited Model Application and Additional Loop
Openings

Create a requirement that specifies a first-order step response with time constant of 5
seconds. Set the Models and Openings properties to further configure the requirement’s
applicability.

Req = TuningGoal.StepTracking('r','y',5);

Req.Models = [2 3];
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Req.Openings = 'OuterLoop'

When tuning a control system that has an input 'r', an output 'y', and an analysis-
point location 'OuterLoop', you can use Req as an input to looptune or systune.
Setting the Openings property specifies that the step response from 'r' to 'y' is
measured with the loop opened at 'OuterLoop'. When tuning an array of control
system models, setting the Models property restricts how the requirement is applied. In
this example, the requirement applies only to the second and third models in an array.

See Also
looptune (for slTuner) | TuningGoal.Tracking | looptune | systune |
systune (for slTuner) | viewSpec | evalSpec | TuningGoal.Overshoot

How To
• “Time-Domain Specifications”
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
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TuningGoal.Tracking class

Package: TuningGoal

Tracking requirement for control system tuning

Description

Use the TuningGoal.Tracking object to specify a frequency-domain tracking
requirement between specified inputs and outputs. This requirement specifies the
maximum relative error (gain from reference input to tracking error) as a function of
frequency. Use this requirement for control system tuning with tuning commands such
as systune or looptune.

You can specify the maximum error profile directly by providing a transfer function.
Alternatively, you can specify a target DC error, peak error, and response time. These
parameters are converted to the following transfer function that describes the maximum
frequency-domain tracking error:

MaxError
PeakError DCError

=
( ) + ( )

+

s

s

c

c

w

w
.

Here, ωc is 2/(response time). The following plot illustrates these relationships for an
example set of values.
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Construction

Req = TuningGoal.Tracking(inputname,outputname,responsetime,dcerror,

peakerror) creates a tuning requirement Req that constrains the tracking performance
from inputname to outputname in the frequency domain. This tuning requirement
specifies a maximum error profile as a function of frequency given by:

MaxError
PeakError DCError

=
( ) + ( )

+

s

s

c

c

w

w
.

The tracking bandwidth ωc = 2/responsetime. The maximum relative steady-state error is
given by dcerror, and peakerror gives the peak relative error across all frequencies.

You can specify a MIMO tracking requirement by specifying signal names or a cell
array of multiple signal names for inputname or outputname. For MIMO tracking
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requirements, use the InputScaling property to help limit cross-coupling. See
“Properties” on page 1-136.

Req = TuningGoal.Tracking(inputname,outputname,maxerror) specifies the
maximum relative error as a function of frequency. You can specify the target error
profile (maximum gain from reference signal to tracking error signal) as a smooth
transfer function. Alternatively, you can sketch a piecewise error profile using an frd
model.

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

responsetime

Target response time, specified as a positive scalar value. The tracking bandwidth is
given by ωc = 2/responsetime.Express the target response time in the time units of the
models to be tuned. For example, when tuning a model T, if T.TimeUnit is 'minutes',
then express the target response time in minutes.

dcerror

Maximum steady-state fractional tracking error, specified as a positive scalar value. For
example, dcerror = 0.01 sets a maximum steady-state error of 1%.

If inputname or outputname are vector-valued, dcerror applies to all I/O pairs from
inputname to outputname.

Default: 0.001

peakerror

Maximum fractional tracking error across all frequencies, specified as a positive scalar
value greater than 1.

Default: 1

maxerror

Target tracking error profile as a function of frequency, specified as a SISO numeric LTI
model.

maxerror is the maximum gain from reference signal to tracking error signal. You can
specify maxerror as a smooth transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise error profile using a frd model. When you do so, the software
automatically maps the error profile to a zpk model. The magnitude of the zpk model.
approximates the desired error profile. Use show(Req) to plot the magnitude of the zpk
model.
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maxerror must be a SISO LTI model. If inputname or outputname are cell arrays,
maxerror applies to all I/O pairs from inputname to outputname.

Properties

MaxError

Maximum error as a function of frequency, expressed as a SISO zpk model. This
property stores the maximum tracking error as a function of frequency (maximum gain
from reference signal to tracking error signal).

If you use the syntax Req =
TuningGoal.Tracking(inputname,outputname,maxerror), then the MaxError
property is the zpk equivalent or approximation of the LTI model you supplied as the
maxerror input argument.

If you use the syntax Req =
TuningGoal.Tracking(inputname,outputname,resptime,dcerror,peakerror),
then the MaxError is a zpk transfer function given by:

MaxError
PeakError DCError

=
( ) + ( )

+

s

s

c

c

w

w
.

MaxError is a SISO LTI model. If inputname or outputname are cell arrays, MaxError
applies to all I/O pairs from inputname to outputname.

Use show(Req) to plot the magnitude of MaxError.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];
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Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

InputScaling

Reference signal scaling, specified as a vector of positive real values.

For a MIMO tuning requirement, when the choice of units results in a mix of small
and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {'y1','y2'} track
reference signals {'r1','r2'}. Suppose further that you require the outputs to
track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from r1 to y2 and r2 and y1 below
0.1. However, if r1 is 100 times larger than r2, the gain from r1 to y2 must be less than
0.001 to ensure that r1 changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.

Default: []

Input

Reference signal names. String or cell array of strings specifying the names of the signals
to be tracked, populated by the inputname argument.

Output

Output signal names. String or cell array of strings specifying the names of the signals
that must track the reference signals, populated by the outputname argument.

Models

Models to which the tuning requirement applies, specified as a vector of indices.
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Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []
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Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Tracking requirement, f(x) is given by:

f x T s x I( ) = ( ) -( )
•

1

MaxError
, .

T(s,x) is the closed-loop transfer function from Input to Output. ◊
•

 denotes the H∞

norm (see norm).

Examples

Tracking Requirement With Response Time and Maximum Steady-State
Tracking Error

Create a tracking requirement specifying that a signal 'theta' track a signal
'theta_ref'. The required response time is 2, in the time units of the control system
you are tuning. The maximum steady-state error is 0.1%.

 Req = TuningGoal.Tracking('theta_ref','theta',2,0.001);

Since peakerror is unspecified, this requirement uses the default value, 1.

Tracking Requirement With Maximum Tracking Error as a Function of
Frequency

Create a tracking requirement specifying that a signal 'theta' track a signal
'theta_ref'. The maximum relative error is 0.01 (1%) in the frequency range [0,1]. The
relative error increases to 1 (100%) at the frequency 100.

Use a frd model model to specify the error profile as a function of frequency.
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err = frd([0.01 0.01 1],[0 1 100]);

Req = TuningGoal.Tracking('theta_ref','theta',err);

The software converts err into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)

The yellow region indicates where the requirement is violated.

See Also
systune (for slTuner) | TuningGoal.Gain | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | TuningGoal.LoopShape | slTuner
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How To
• “Time-Domain Specifications”
• “Tuning Control Systems with SYSTUNE”
• “Tuning Control Systems in Simulink”
• “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
• “Decoupling Controller for a Distillation Column”
• “Digital Control of Power Stage Voltage”
• “Tuning of a Two-Loop Autopilot”
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TuningGoal.Transient class

Package: TuningGoal

Transient matching requirement for control system tuning

Description

Use the TuningGoal.Transient object to constrain the transient response from
specified inputs to specified outputs. This requirement specifies that the transient
response closely match the response of a reference model. Specify the closeness of the
required match using the RelGap property of the requirement (see “Properties” on page
1-145). You can constrain the response to an impulse, step, or ramp input signal. You
can also constrain the response to an input signal given by the impulse response of an
input filter you specify.

Construction

Req = TuningGoal.Transient(inputname,outputname,refsys) requires that the
impulse response from inputname to outputname closely matches the impulse response
of the reference model refsys. Specify the closeness of the required match using the
RelGap property of the requirement (see “Properties” on page 1-145). inputname and
outputname can describe a SISO or MIMO response of your control system. For MIMO
responses, the number of inputs must equal the number of outputs.

Req = TuningGoal.Transient(inputname,outputname,refsys,inputtype)

specifies whether the input signal that generates the constrained transient response is
and impulse, step, or ramp signal.

Req = TuningGoal.Transient(inputname,outputname,refsys,inputfilter)

specifies the input signal for generating the transient response that the requirement
constrains. Specify the input signal as a SISO transfer function, inputfilter, that is the
Laplace transform of the desired time-domain input signal. The impulse response of
inputfilter is the desired input signal.
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Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

refsys

Reference system for target transient response, specified as a dynamic system model,
such as a tf, zpk, or ss model. The desired transient response is the response of this
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model to the input signal specified by inputtype or inputfilter. The reference model must
be stable, and the series connection of the reference model with the input shaping filter
must have no feedthrough term.

inputtype

Type of input signal that generates the constrained transient response, specified as one
of the following strings:

• 'impulse' — Constrain the response at outputname to a unit impulse applied at
inputname.

• 'step' — Constrain the response to a unit step. Using 'step' is equivalent to using
the TuningGoal.StepTracking design goal.

• 'ramp' — Constrain the response to a unit ramp, u = t.

Default: 'impulse'

inputfilter

Custom input signal for generating the transient response, specified as a SISO transfer
function (tf or zpk) model that represents the Laplace transform of the desired input
signal. inputfilter must be continuous, and can have no poles in the open right-half plane.

The frequency response of inputfilter gives the signal spectrum of the desired input
signal, and the impulse response of inputfilter is the time-domain input signal.

For example, to constrain the transient response to a unit-amplitude sine wave of
frequency w, set inputfilter to tf(w,[1,0,w^2]). This transfer function is the Laplace
transform of sin(wt).

The series connection of refsys with inputfilter must have no feedthrough term.

Properties

ReferenceModel

Reference system for target transient response, specified as a SISO or MIMO state-
space (ss) model. When you use the requirement to tune a control system, the transient
response from inputname to outputname is tuned to match this target response to within
the tolerance specified by the RelGap property.



1 Class Reference

1-146

The refsys argument to TuningGoal.Transient sets the value of ReferenceModel to
ss(refsys).

InputShaping

Input signal for generating the transient response, specified as a SISO zpk model that
represents the Laplace transform of the time-domain input signal. InputShaping must
be continuous, and can have no poles in the open right-half plane. The value of this
property is populated using the inputtype or inputfilter arguments used when creating
the requirement.

For requirements created using an inputtype string, InputShaping takes the following
values:

inputtype InputShaping

'impulse' 1
'step' 1/s
'ramp' 1/s2

For requirements created using an inputfilter transfer function, InputShaping takes
the value zpk(inputfilter).

The series connection of ReferenceModel with InputShaping must have no
feedthrough term.

Default: 1

RelGap

Maximum relative matching error, specified as a positive scalar value. This property
specifies the matching tolerance as the maximum relative gap between the target and
actual transient responses. The relative gap is defined as:

gap =
( ) - ( )

( )

y t y t

y t

ref

ref tr

2
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.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref

(deviation from steady-state value or trajectory). ◊

2
 denotes the signal energy (2-norm).
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The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to
the RMS of the reference transient

Increase the value of RelGap to loosen the matching tolerance.

Default: 0.1

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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Input

Input signal names, specified as a string or cell array of strings. These strings specify the
inputs for the transient responses that the tuning requirement constraint. The initial
value of the Input property is populated by the inputname argument.

Output

Output signal names, specified as a string or cell array of strings. These strings specify
the outputs where transient responses that the tuning requirement constraints are
measured. The initial value of the Output property is populated by the outputname
argument.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.
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If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
of the tuning goal (see “Algorithms” on page 1-150), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = ltiblock.ss('C',1,2,3);
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To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.Value = 0;

C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as ltiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Transient requirement, f(x) is based upon the relative gap
between the tuned response and the target response:

gap =
( ) - ( )

( )

y t y t

y t

ref

ref tr

2

2( )

.

y(t) – yref(t) is the response mismatch, and 1 – yref(tr)(t) is the transient portion of yref

(deviation from steady-state value or trajectory). ◊

2
 denotes the signal energy (2-norm).

The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to
the RMS of the reference transient

Examples

Transient Response Requirement with Specified Input Type and Tolerance

Create a requirement for the transient response from a signal named 'r' to a signal
named 'u'. Constrain the impulse response to match the response of transfer function

, but allow 20% relative variation between the target and tuned
responses.
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refsys = tf(1,[1 1]);

Req1 = TuningGoal.Transient('r','u',refsys);

When you do not specify a response type, the requirement constrains the transient
response. By default, the requirement allows a relative gap of 0.1 between the target
and tuned responses. To change the relative gap to 20%, set the RelGap property of the
requirement.

Req1.RelGap = 0.2;

Examine the requirement.

viewSpec(Req1)



1 Class Reference

1-152

The dashed line shows the target impulse response specified by this requirement. You
can use this requirement to tune a control system model, T, that contains valid input and
output locations named 'r' and 'u'. If you do so, the command viewSpec(Req1,T)
plots the achieved impulse response from 'r' to 'u' for comparison to the target
response.

Create a requirement that constrains the response to a step input, instead of the impulse
response.

Req2 = TuningGoal.Transient('r','u',refsys,'step');

Examine this requirement.

viewSpec(Req2)
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Req2 is equivalent to the following step tracking requirement:

Req3 = TuningGoal.StepTracking('r','u',refsys);

Constrain Transient Response to Custom Input Signal

Create a requirement for the transient response from 'r' to 'u'. Constrain the response
to a sinusoidal input signal, rather than to an input, step, or ramp.

To specify a custom input signal, set the input filter to the Laplace transform of the
desired signal. For example, suppose you want to constrain the response to a signal of

. The Laplace transform of this signal is given by:

Create a requirement that constrains the response at 'u' to a sinusoidal input of natural
frequency 2 rad/s at 'r'. The response should match that of the reference system

.

refsys = tf(1,[1 1]);

w = 2;

inputfilter = tf(w,[1 0 w^2]);

Req = TuningGoal.Transient('u','r',refsys,inputfilter);

Examine the requirement to see the shape of the target response.

viewSpec(Req)
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Requirement with Limited Model Application and Additional Loop
Openings

Create a requirement that constrains the impulse response. Set the Models and
Openings properties to further configure the requirement’s applicability.

refsys = tf(1,[1 1]);

Req = TuningGoal.Transient('r','u',refsys);

Req.Models = [2 3];

Req.Openings = 'OuterLoop'

When tuning a control system that has an input (or analysis point) 'r', an output
(or analysis point) 'u', and another analysis point at location 'OuterLoop', you
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can use Req as an input to looptune or systune. Setting the Openings property
specifies that the impulse response from 'r' to 'y' is computed with the loop opened
at 'OuterLoop'. When tuning an array of control system models, setting the Models
property restricts how the requirement is applied. In this example, the requirement
applies only to the second and third models in an array.

See Also
systune (for slTuner) | TuningGoal.StepTracking |
TuningGoal.StepRejection | slTuner | looptune | systune | looptune (for
slTuner) | viewSpec | evalSpec

How To
• “Time-Domain Specifications”
• “Tuning Control Systems with SYSTUNE”
• “Tuning Control Systems in Simulink”
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TuningGoal.Variance class
Package: TuningGoal

Noise amplification constraint for control system tuning

Description

Use the TuningGoal.Variance object to specify a tuning requirement that limits the
noise amplification from specified inputs to outputs. The noise amplification is defined as
either:

• The square root of the output variance, for a unit-variance white-noise input
• The root-mean-square of the output, for a unit-variance white-noise input
• The H2 norm of the transfer function from the specified inputs to outputs, which

equals the total energy of the impulse response

These definitions are different interpretations of the same quantity.
TuningGoal.Variance imposes the same limit on these quantities.

You can use the TuningGoal.Variance requirement for control system tuning with
tuning commands, such as systune or looptune. Specifying this requirement allows
you to tune the system response to white-noise inputs. For stochastic inputs with a
nonuniform spectrum (colored noise), use TuningGoal.WeightedVariance instead.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-159 of the object.

Construction

Req = TuningGoal.Variance(inputname,outputname,maxamp) creates a tuning
requirement. This tuning requirement limits the noise amplification of the transfer
function from inputname to outputname to the scalar value maxamp.

When you tune a control system in discrete time, this requirement assumes that the
physical plant and noise process are continuous. To ensure that continuous-time and
discrete-time tuning give consistent results, maxamp is interpreted as a constraint on
the continuous-time H2 norm. If the plant and noise processes are truly discrete and you
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want to constrain the discrete-time H2 norm instead, multiply maxamp by T
s

. Ts is the
sample time of the model you are tuning.

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:



1 Class Reference

1-158

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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maxamp

Maximum noise amplification from inputname to outputname, specified as a positive
scalar value. This value specifies the maximum value of the output variance at the
signals specified in outputname, for unit-variance white noise signal at inputname. This
value corresponds to the maximum H2 norm from inputname to outputname.

When you tune a control system in discrete time, this requirement assumes that the
physical plant and noise process are continuous, and interprets maxamp as a bound
on the continuous-time H2 norm. This ensures that continuous-time and discrete-time
tuning give consistent results. If the plant and noise processes are truly discrete, and you
want to bound the discrete-time H2 norm instead, specify the value maxamp/ T

s
. Ts is

the sample time of the model you are tuning.

Properties

MaxAmplification

Maximum noise amplification, specified as a positive scalar value. This property specifies
the maximum value of the output variance at the signals specified in Output, for unit-
variance white noise signal at Input. This value corresponds to the maximum H2 norm
from Input to Output. The initial value of MaxAmplification is set by the maxamp
input argument when you construct the requirement.

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued
output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function Do

–1T(s)Di. The diagonal matrices Do and Di
have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;
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When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
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of the tuning goal (see “Algorithms” on page 1-162), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = ltiblock.ss('C',1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.Value = 0;

C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as ltiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
The vector x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.Variance requirement, f(x) is given by:

f x T s x( ) = ( )
1

2MaxAmplification
, .
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T(s,x) is the closed-loop transfer function from Input to Output. ◊

2
 denotes the H2

norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

f x
T

T z x

s

( ) = ( )
1

2
MaxAmplification

, .

Ts is the sample time of the discrete-time transfer function T(z,x).

Examples

Constrain Noise Amplification Evaluated with a Loop Opening

Create a requirement that constrains the amplification of the variance from the analysis
point AP2 to the output y of the following control system, measured with the outer loop
open.

Create a model of the system. To do so, specify and connect the numeric plant models
G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the
AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and
tuning.

G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

AP1 = AnalysisPoint('AP1');
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AP2 = AnalysisPoint('AP2');

T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the noise amplification from the implicit
input associated with the analysis point, AP2, to the output y.

Req = TuningGoal.Variance('AP2','y',0.1);

This constraint limits the amplification to a factor of 0.1.

Specify that the transfer function from AP2 to y is evaluated with the outer loop open
when tuning to this constraint.

Req.Openings = {'AP1'};

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then validate the tuned control system against the requirement using
viewSpec(Req,T,Info).

See Also
looptune (for slTuner) | TuningGoal.WeightedVariance | looptune |
systune | systune (for slTuner) | slTuner | viewSpec | evalSpec | norm

How To
• “Frequency-Domain Specifications”
• “Active Vibration Control in Three-Story Building”
• “Fault-Tolerant Control of a Passenger Jet”
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TuningGoal.WeightedGain class
Package: TuningGoal

Frequency-weighted gain constraint for control system tuning

Description

Use the TuningGoal.WeightedGain object to specify a tuning requirement that limits
the weighted gain from specified inputs to outputs. The weighted gain is the maximum
across frequency of the gain from input to output, multiplied by weighting functions
that you specify. You can use the TuningGoal.WeightedGain requirement for control
system tuning with tuning commands such as systune or looptune.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-168 of the object.

Construction

Req = TuningGoal.WeightedGain(inputname,outputname,WL,WR) creates a
tuning requirement. This tuning requirement specifies that the closed-loop transfer
function, H(s), from the specified input to output meets the requirement:
||WL(s)H(s)WR(s)||∞ < 1.

The notation ||•||∞ denotes the maximum gain across frequency (the H∞ norm).

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
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• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
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getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

WL,WR

Frequency-weighting functions, specified as scalars or as SISO or MIMO numeric LTI
models.

The functions WL and WR provide the weights for the tuning requirement. The tuning
requirement ensures that the gain H(s) from the specified input to output satisfies the
inequality:
||WL(s)H(s)WR(s)||∞ < 1.
WL provides the weighting for the output channels of H(s), and WR provides the weighting
for the input channels. You can specify scalar weights or frequency-dependent weighting.
To specify a frequency-dependent weighting, use a numeric LTI model. For example:

WL = tf(1,[1 0.01]);

WR = 10;
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If you specify MIMO weighting functions, then inputname and outputname must be
vector signals. The dimensions of the vector signals must be such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For example, if you specify WR
= diag([1 10]), then inputname must include two signals. Scalar values, however,
automatically expand to any input or output dimension.

A value of WL = [] or WR = [] is interpreted as the identity.

Properties

WL

Frequency-weighting function for the output channels of the transfer function H(s) to
constrain, specified as a scalar, or as a SISO or MIMO numeric LTI model. The initial
value of the WL property is set by the WL input argument when you construct the
requirement object.

WR

Frequency-weighting function for the input channels of the transfer function to constrain,
specified as a scalar or as a SISO or MIMO numeric LTI model. The initial value of the
WR property is set by the WR input argument when you construct the requirement object.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0,Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
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By default, TuningGoal.Gain imposes a stability requirement on the closed-
loop transfer function from the specified inputs to outputs, in addition to the gain
requirement. If stability is not required or cannot be achieved, set Stabilize to false
to remove the stability requirement. For example, if the gain constraint applies to an
unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
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the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value
f(x). x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.WeightedGain requirement, f(x) is given by:

f x W T s x WL R( ) = ( )
•

, .
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T(s,x) is the closed-loop transfer function from Input to Output. ◊
•

 denotes the H∞

norm (see norm).

Examples

Constrain Weighted Gain of Closed-Loop System

Create a tuning goal requirement that constrains the gain of a closed-loop SISO system
from its input, r, to its output, y. Weight the gain at its input by a factor of 10 and at its
output by the frequency-dependent weight .

WL = tf(1,[1 0.01]);

WR = 10;

Req = TuningGoal.WeightedGain('r','y',WL,WR);

You can use the requirement Req with systune to tune the free parameters of any
control system model that has an input signal named 'r' and an output signal named
'y'.

You can then use viewSpec to validate the tuned control system against the
requirement.

Constrain Weighted Gain Evaluated with a Loop Opening

Create a requirement that constrains the gain of the outer loop of the following control
system, evaluated with the inner loop open.

Create a model of the system. To do so, specify and connect the numeric plant models, G1
and G2, the tunable controllers C1 and C2. Also, create and connect the AnalysisPoint
blocks that mark points of interest for analysis or tuning, AP1 and AP2.
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G1 = tf(10,[1 10]);

G2 = tf([1 2],[1 0.2 10]);

C1 = ltiblock.pid('C','pi');

C2 = ltiblock.gain('G',1);

AP1 = AnalysisPoint('AP1');

AP2 = AnalysisPoint('AP2');

T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);

T.InputName = 'r';

T.OutputName = 'y';

Create a tuning requirement that constrains the gain of this system from r to y. Weight
the gain at the output by .

WL = tf([1 0],[1 0.5]);

Req = TuningGoal.WeightedGain('r','y',WL,[]);

This requirement is equivalent to Req = TuningGoal.Gain('r','y',1/WL).
However, for MIMO systems, you can use TuningGoal.WeightedGain to create
channel-specific weightings that cannot be expressed as TuningGoal.Gain
requirements.

Specify that the transfer function from r to y be evaluated with the outer loop open for
the purpose of tuning to this constraint.

Req.Openings = 'AP1';

By default, tuning using TuningGoal.WeightedGain imposes a stability requirement
as well as the gain requirement. Practically, in some control systems it is not possible to
achieve a stable inner loop. When this occurs, remove the stability requirement for the
inner loop by setting the Stabilize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then validate the tuned control system against the requirement using
the command viewSpec(Req,T,Info).

See Also
looptune (for slTuner) | looptune | systune | systune (for slTuner) |
slTuner | viewSpec | evalSpec
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How To
• “Frequency-Domain Specifications”
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TuningGoal.WeightedVariance class

Package: TuningGoal

Frequency-weighted H2 norm constraint for control system tuning

Description

Use the TuningGoal.WeightedVariance object to specify a tuning requirement that
limits the weighted H2 norm of the transfer function from specified inputs to outputs. The
H2 norm measures:

• The total energy of the impulse response, for deterministic inputs to the transfer
function.

• The square root of the output variance for a unit-variance white-noise input, for
stochastic inputs to the transfer function. Equivalently, the H2 norm measures the
root-mean-square of the output for such input.

You can use the TuningGoal.WeightedVariance requirement for control system
tuning with tuning commands, such as systune or looptune. By specifying
this requirement, you can tune the system response to stochastic inputs with
a nonuniform spectrum such as colored noise or wind gusts. You can also use
TuningGoal.WeightedVariance to specify LQG-like performance objectives.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-177 of the object.

Construction

Req = TuningGoal.Variance(inputname,outputname,WL,WR) creates a tuning
requirement Req. This tuning requirement specifies that the closed-loop transfer function
H(s) from the specified input to output meets the requirement:
||WL(s)H(s)WR(s)||2 < 1.
The notation ||•||2 denotes the H2 norm.

When you are tuning a discrete-time system, Req imposes the following constraint:
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1
1

2
T

W z T z x W z

s

L R( ) ( ) ( ) <, .

The H2 norm is scaled by the square root of the sample time Ts to ensure consistent
results with tuning in continuous time. To constrain the true discrete-time H2 norm,
multiply either WL or WR by T

s
.

Input Arguments

inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

• Any model input.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

• Any input of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.InputName. Also, if T contains an AnalysisPoint block with a
location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

• Any model output.
• Any linear analysis point marked in the model.
• Any linear analysis point in an slTuner interface associated with the Simulink

model. Use addPoint to add analysis points to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

• Any output of the genss model
• Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include 'AP_y'. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

WL,WR

Frequency-weighting functions, specified as scalars or as SISO or MIMO numeric LTI
models.

The functions WL and WR provide the weights for the tuning requirement. The tuning
requirement ensures that the gain H(s) from the specified input to output satisfies the
inequality:
||WL(s)H(s)WR(s)||2 < 1.
WL provides the weighting for the output channels of H(s), and WR provides the weighting
for the input channels. You can specify scalar weights or frequency-dependent weighting.
To specify a frequency-dependent weighting, use a numeric LTI model. For example:

WL = tf(1,[1 0.01]);

WR = 10;

If you specify MIMO weighting functions, then inputname and outputname must be
vector signals. The dimensions of the vector signals must be such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For example, if you specify WR
= diag([1 10]), then inputname must include two signals. Scalar values, however,
automatically expand to any input or output dimension.

When you are tuning a discrete-time system, WL and WR must be either scalars or
discrete-time models having the same sample time (Ts) as the model you are tuning.

A value of WL = [] or WR = [] is interpreted as the identity.

Properties
WL

Frequency-weighting function for the output channels of the transfer function H(s) to
constrain, specified as a scalar, or as a SISO or MIMO numeric LTI model. The initial
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value of the WL property is set by the WL input argument when you construct the
requirement object.

WR

Frequency-weighting function for the input channels of the transfer function to constrain,
specified as a scalar or as a SISO or MIMO numeric LTI model. The initial value of the
WR property is set by the WR input argument when you construct the requirement object.

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
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the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = 'LoopReq';

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H2 norm, and therefore the value
of the tuning goal (see “Algorithms” on page 1-180), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.
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When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = ltiblock.ss('C',1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.Value = 0;

C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as ltiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value
f(x). x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal.WeightedVariance requirement, f(x) is given by:

f x W T s x WL R( ) = ( ), .
2

T(s,x) is the closed-loop transfer function from Input to Output. ◊

2
 denotes the H2

norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

f x
T

W z T z x W z

s
L R( ) = ( ) ( ) ( )

1

2
, .



 TuningGoal.WeightedVariance class

1-181

Ts is the sample time of the discrete-time transfer function T(z,x).

Examples

Weighted Constraint on H2 Norm

Create a constraint for a transfer function with one input, r, and two outputs, e and y,
that limits the  norm as follows:

 is the closed-loop transfer function from r to e, and  is the closed-loop transfer
function from r to y.

s = tf('s');

WL = blkdiag(1/(s+0.001),s/(0.001*s+1));

Req = TuningGoal.WeightedVariance('r',{'e','y'},WL,[]);

See Also
systune (for slTuner) | TuningGoal.Gain | TuningGoal.Variance | systune
| looptune | looptune (for slTuner) | TuningGoal.LoopShape | slTuner |
norm

How To
• “Frequency-Domain Specifications”
• “Fault-Tolerant Control of a Passenger Jet”
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actual2normalized
Transform actual values to normalized values

Syntax

NV = actual2normalized(uElement,AV)

[NV,ndist] = actual2normalized(uElement,AV)

Description

NV = actual2normalized(uElement,AV) transforms the values AV of the uncertain
element uElement into normalized values NV. If AV is the nominal value of uElement,
NV is 0. Otherwise, AV values inside the uncertainty range of uElement map to the
unit ball ||NV|| <= 1, and values outside the uncertainty range map to ||NV|| >
1. The argument AV can contain a single value or an array of values. NV has the same
dimensions as AV.

[NV,ndist] = actual2normalized(uElement,AV) also returns the normalized
distance ndist between the values AV and the nominal value of uElement. This distance
is the norm of NV. Therefore, ndist <= 1 for values inside the uncertainty range of
uElement, and ndist > 1 for values outside the range. If AV is an array of values, then
ndist is an array of normalized distances.

The robustness margins computed in robuststab and robustperf serve as bounds for
the normalized distances in ndist. For example, if an uncertain system has a stability
margin of 1.4, this system is stable for all uncertain element values whose normalized
distance from the nominal is less than 1.4.

Examples

Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their nominal value, the
normalized distance is intuitive, scaling linearly with the numerical difference from the
uncertain real parameter's nominal value.
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Create uncertain real parameters with a range that is symmetric about the nominal
value, where each end point is 1 unit from the nominal. Points that lie inside the range
are less than 1 unit from the nominal, while points that lie outside the range are greater
than 1 unit from the nominal.

a = ureal('a',3,'range',[1 5]);

NV = actual2normalized(a,[1 3 5])

NV =

   -1.0000         0    1.0000

NV = actual2normalized(a,[2 4])

NV =

   -0.5000    0.5000

NV = actual2normalized(a,[0 6])

NV =

   -1.5000    1.5000

Plot the normalized values and normalized distance for several values.

values = linspace(-3,9,250);

[nv,ndist] = actual2normalized(a,values);

plot(values,nv,'r.',values,ndist,'b-')
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Uncertain Real Parameter with Nonsymmetric Range

Create a nonsymmetric parameter. The end points are 1 normalized unit from nominal,
and the nominal is 0 normalized units from nominal. Moreover, points inside the range
are less than 1 unit from nominal, and points outside the range are greater than 1 unit
from nominal. However, the relationship between the normalized distance and numerical
difference is nonlinear.

au = ureal('ua',4,'range',[1 5]);

NV = actual2normalized(au,[1 4 5])

NV =
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    -1     0     1

NV = actual2normalized(au,[2 4.5])

NV =

   -0.8000    0.4000

NV = actual2normalized(au,[0 6])

NV =

   -1.1429    4.0000

Graph the relationship between actual and normalized values. The relationship is very
nonlinear.

AV = linspace(-5,6,250);

NV = actual2normalized(au,AV);

plot(NV,AV,0,au.NominalValue,'ro',-1,au.Range(1),'bo',1,au.Range(2),'bo')

grid, xlabel('Normalized Values'), ylabel('Actual Values')



2 Alphabetical List

2-6

The red circle shows the nominal value (normalized value = 0). The blue circles show the
values at the edges of the uncertainty range (normalized values = -1, 1).

More About

Algorithms

For details on the normalize distance, see “Normalizing Functions for Uncertain
Elements” in the Robust Control Toolbox™ User's Guide.



 actual2normalized

2-7

See Also
normalized2actual | robuststab | robustperf
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aff2pol
Convert affine parameter-dependent models to polytopic models

Syntax
polsys = aff2pol(affsys)

Description

aff2pol derives a polytopic representation polsys of the affine parameter-dependent
system

E p x A p x B p u( ) ( ) ( )& = +

y C p x D p u= +( ) ( )

where p = (p1, . . . , pn) is a vector of uncertain or time-varying real parameters taking
values in a box or a polytope. The description affsys of this system should be specified
with psys.

The vertex systems of polsys are the instances of Equation 2-1 and Equation 2-2 at the
vertices pex of the parameter range, i.e., the SYSTEM matrices

A p jE p B p

C p D p

ex ex ex

ex ex

( ) ( ) ( )

( ) ( )

+









for all corners pex of the parameter box or all vertices pex of the polytope of parameter
values.

See Also
psys | pvec | uss
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augw

State-space or transfer function plant augmentation for use in weighted mixed-
sensitivity H∞ and H2 loopshaping design

Syntax

P = AUGW(G,W1,W2,W3)

Description

P = AUGW(G,W1,W2,W3) computes a state-space model of an augmented LTI plant
P(s) with weighting functions W1(s), W2(s), and W3(s) penalizing the error signal, control
signal and output signal respectively (see block diagram) so that the closed-loop transfer
function matrix is the weighted mixed sensitivity
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where S, R and T are given by
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1

The LTI systems S and T are called the sensitivity and complementary sensitivity,
respectively.
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Plant Augmentation

For dimensional compatibility, each of the three weights W1, W2 and W3 must be either
empty, a scalar (SISO) or have respective input dimensions Ny, Nu, and Ny where G is
Ny-by-Nu. If one of the weights is not needed, you may simply assign an empty matrix
[ ]; e.g., P = AUGW(G,W1,[],W3) is P(s) as in the “Algorithms” on page 2-12 section
below, but without the second row (without the row containing W2).

Examples

Create Augmented Plant for H-Infinity Synthesis

s = zpk('s');

G = (s-1)/(s+1);

W1 = 0.1*(s+100)/(100*s+1);

W2 = 0.1;

W3 = [];

P = augw(G,W1,W2,W3);

[K,CL,GAM] = hinfsyn(P);

[K2,CL2,GAM2] = h2syn(P);
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L = G*K;

S = inv(1+L);

T = 1-S;

sigma(S,'k',GAM/W1,'k-.',T,'r',GAM*G/W2,'r-.')

legend('S = 1/(1+L)','GAM/W1','T=L/(1+L)','GAM*G/W2',2)

Limitations

The transfer functions G, W1, W2 and W3 must be proper, i.e., bounded as s → ∞  or, in
the discrete-time case, as z → ∞ . Additionally, W1, W2 and W3 should be stable. The plant
G should be stabilizable and detectable; else, P will not be stabilizable by any K.
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More About

Algorithms

The augmented plant P(s) produced by is

P s
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Partitioning is embedded via P=mktito(P,NY,NU), which sets the InputGroup and
OutputGroup properties of P as follows

[r,c]=size(P);

P.InputGroup  = struct('U1',1:c-NU,'U2',c-NU+1:c);

P.OutputGroup = struct('Y1',1:r-NY,'Y2',r-NY+1:r);

See Also
h2syn | hinfsyn | mixsyn | mktito
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balancmr
Balanced model truncation via square root method

Syntax
GRED = balancmr(G)

GRED = balancmr(G,order)

[GRED,redinfo] = balancmr(G,key1,value1,...)

[GRED,redinfo] = balancmr(G,order,key1,value1,...)

Description
balancmr returns a reduced order model GRED of G and a struct array redinfo
containing the error bound of the reduced model and Hankel singular values of the
original system.

The error bound is computed based on Hankel singular values of G. For a stable system
these values indicate the respective state energy of the system. Hence, reduced order can
be directly determined by examining the system Hankel singular values, σι.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥ G-
GRED ∥ ∞ for well-conditioned model reduced problems [1]:

G Gred i

k

n

− ≤∞
+
∑2

1

σ

This table describes input arguments for balancmr.

Argument Description

G LTI model to be reduced. Without any other inputs, balancmr
will plot the Hankel singular values of G and prompt for
reduced order
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Argument Description

ORDER (Optional) Integer for the desired order of the reduced model,
or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of positive integers. By default, all the anti-stable part of
a system is kept, because from control stability point of view, getting rid of unstable
state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for 'Order'. In this
case, reduced order will be determined when the sum of the tails of the Hankel singular
values reaches the 'MaxError'.

This table lists the input arguments 'key' and its 'value'.

Argument Value Description

'MaxError' Real number or vector
of different errors

Reduce to achieve H∞ error. When
present, 'MaxError'overides ORDER
input.

'Weights' {Wout,Win} cell array Optimal 1-by-2 cell array of LTI
weights Wout (output) and Win
(input). Defaults are both identity.
Weights must be invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default
'off').

'Order' Integer, vector or cell
array

Order of reduced model. Use only if
not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Becomes multidimensional array when input
is a serial of different model order array
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Argument Description

REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on ∥ G-GRED ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234,'twister'); 

G = rss(30,5,4);

[g1, redinfo1] = balancmr(G); % display Hankel SV plot

                              % and prompt for order (try 15:20)

[g2, redinfo2] = balancmr(G,20); 

[g3, redinfo3] = balancmr(G,[10:2:18]);

[g4, redinfo4] = balancmr(G,'MaxError',[0.01, 0.05]);

for i = 1:4

    figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

More About

Algorithms

Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the kth order reduced model.

1 Find the SVD of the controllability and observability grammians
P = Up Σp Vp

T

Q = UqΣq Vq
T

2 Find the square root of the grammians (left/right eigenvectors)
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Lp = Up  Σp
½

Lo = Uq Σq
½

3 Find the SVD of (Lo
TLp)

Lo
T Lp = U Σ VT

4 Then the left and right transformation for the final kth order reduced model is
SL,BIG = Lo U(:,1:k) Σ(1;k,1:k))–½

SR,BIG = Lp V(:,1:k) Σ(1;k,1:k))–½

5 Finally,

ˆ ˆ

ˆ ˆ

, , ,

,

A B

C D

S AS S B

CS D

L BIG
T

R BIG L BIG
T

R BIG













=












The proof of the square root balance truncation algorithm can be found in [2].

References

[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear Multivariable
Systems, and Their Lµ-error Bounds,“ Int. J. Control, Vol. 39, No. 6, 1984, p.
1145-1193

[2] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989, p.729-733

See Also
reduce | schurmr | bstmr | ncfmr | hankelmr | hankelsv



 bilin

2-17

bilin
Multivariable bilinear transform of frequency (s or z)

Syntax
GT = bilin(G,VERS,METHOD,AUG)

Description
bilin computes the effect on a system of the frequency-variable substitution,

s
z

z

= +
+

α δ
γ β

The variable VERS denotes the transformation direction:

VERS= 1, forward transform (s→z) or ( )s s→ % .

VERS=-1, reverse transform (z→s) or ( )s s→ % .

This transformation maps lines and circles to circles and lines in the complex plane.
People often use this transformation to do sampled-data control system design [1] or, in
general, to do shifting of jω modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as backward
rectangular, etc., based on the METHOD you select

Bilinear Transform Types

Method Type of bilinear transform

'BwdRec' backward rectangular:

s
z

Tz
= −1

AUG = T, the sample time.
'FwdRec' forward rectangular:
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Method Type of bilinear transform

s
z

T
=

−1

AUG = T, the sample time.
'S_Tust' shifted Tustin:

s
T

z

z

h

= −

+















2 1

1

AUG = [T h], is the “shift” coefficient.
'S_ftjw' shifted jω-axis, bilinear pole-shifting, continuous-time to

continuous-time:

s
s p

s p
=

+
+
%

%

1

21 /

AUG = [p2 p1].
'G_Bilin' METHOD = 'G_Bilin', general bilinear, continuous-time to

continuous-time:

s
s

s

= +
+

α δ
γ β
%

%

AUG = α β γ δ   [ ] .

Examples

Tustin Continuous s-Plane to Discrete z-Plane Transforms

Consider the following continuous-time plant (sampled at 20 Hz):
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A B C D=
−

−








 =









 =









 =











1 1

0 2

1 0

1 1

1 0

0 1

0 0

0 0
, , , ;    TTs = 0 05.

Following is an example of four common “continuous to discrete” bilin transformations
for the sampled plant:

A = [-1 1; 0 -2];

B = [1 0; 1 1];

C = [1 0; 0 1];

D = [0 0; 0 0];

sys = ss(A,B,C,D);                   % ANALOG

Ts = 0.05;  % sample time

syst = c2d(sys,Ts,'tustin');         % Tustin

sysp = c2d(sys,Ts,'prewarp',40);     % Pre-warped Tustin

sysb = bilin(sys,1,'BwdRec',Ts);     % Backward Rectangular

sysf = bilin(sys,1,'FwdRec',Ts);     % Forward Rectangular

Plot the response of the continuous-time plant and the transformed discrete-time plants.

w = logspace(-2,3,50); % frequencies to plot

sigma(sys,syst,sysp,sysb,sysf,w);

legend('sys','syst','sysp','sysb','sysf','Location','SouthWest')
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Bilinear continuous to continuous pole-shifting

Design an H mixed-sensitivity controller for the ACC Benchmark plant

G s

s s

( )
( )

=
+

1

2
2 2

such that all closed-loop poles lie inside a circle in the left half of the s-plane whose
diameter lies on between points [p1,p2]=[–12,–2]:

p1=-12; p2=-2; s=zpk('s');
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G=ss(1/(s^2*(s^2+2)));          % original unshifted plant

Gt=bilin(G,1,'Sft_jw',[p1 p2]); % bilinear pole shifted plant Gt

Kt=mixsyn(Gt,1,[],1);           % bilinear pole shifted controller

K =bilin(Kt,-1,'Sft_jw',[p1 p2]); % final controller K

As shown in the following figure, closed-loop poles are placed in the left circle [p1 p2].
The shifted plant, which has its non-stable poles shifted to the inside the right circle, is

G s
s

s s s
t ( ) .

( )

( ) ( . . )
= ×

−

− − +
−

4 765 10
12

2 4 274 5 918

5
4

2 2

'S_ftjw' final closed-loop poles are inside the left [p1,p2] circle
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More About

Algorithms

bilin employs the state-space formulae in [3]:

A B

C D

A I I A I A B

C I A

b b

b b













=
− + −( ) −( )

−

− −
( )( )

( )

β δ α γ αβ γδ α γ

α γ

1 1

−− −+ −













1 1

D C I A Bγ α γ( )

References

[1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System, Addison-Wesley,
1980.

[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, “H∞ Control Synthesis for a Large
Space Structure,” AIAA J. Guidance, Control and Dynamics, 14, 3, p. 513-520,
May/June 1991.

[3] Safonov, M.G., “Imaginary-Axis Zeros in Multivariable H∞ Optimal Control”, in R.F.
Curtain (editor), Modelling, Robustness and Sensitivity Reduction in Control
Systems, p. 71-81, Springer-Varlet, Berlin, 1987.
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Transform,” AIAA, J. Guidance, Control and Dynamics, vol. 15, no. 5, p.
1111-1117, September-October 1992.

See Also
c2d | d2c | sectf
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bstmr

Balanced stochastic model truncation (BST) via Schur method

Syntax

GRED = bstmr(G)

GRED = bstmr(G,order)

[GRED,redinfo] = bstmr(G,key1,value1,...)

[GRED,redinfo] = bstmr(G,order,key1,value1,...)

Description

bstmr returns a reduced order model GRED of G and a struct array redinfo containing
the error bound of the reduced model and Hankel singular values of the phase matrix of
the original system [2].

The error bound is computed based on Hankel singular values of the phase matrix of
G. For a stable system these values indicate the respective state energy of the system.
Hence, reduced order can be directly determined by examining these values.

With only one input argument G, the function will show a Hankel singular value plot of
the phase matrix of G and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the multiplicative ∥
GRED–1(G-GRED) ∥ ∞ or relative error ∥ G-–1(G-GRED) ∥ ∞ for well-conditioned model
reduction problems [1]:

G G Gred i i i

k

n
−

∞
+

− ≤ + + +( ) −∏1 2

1

1 2 1 1( ) ( )σ σ σ

This table describes input arguments for bstmr.
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Argument Description

G LTI model to be reduced (without any other inputs will plot its
Hankel singular values and prompt for reduced order)

ORDER (Optional) an integer for the desired order of the reduced model,
or a vector of desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of a system
is kept, because from control stability point of view, getting rid of unstable state(s) is
dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this
case, reduced order will be determined when the accumulated product of Hankel singular
values shown in the above equation reaches the 'MaxError'.

Argument Value Description

'MaxError' Real number or vector
of different errors

Reduce to achieve H∞ error.

When present, 'MaxError'overides
ORDER input.

'Display' 'on' or 'off' Display Hankel singular plots (default
'off').

'Order' Integer, vector or cell
array

Order of reduced model. Use only if not
specified as 2nd argument.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimension array when
input is a serial of different model order array.

REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on ∥G–1(G-GRED) ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)
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G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234,'twister'); 

G = rss(30,5,4); G.d = zeros(5,4);

[g1, redinfo1] = bstmr(G); % display Hankel SV plot 

                           % and prompt for order (try 15:20)

[g2, redinfo2] = bstmr(G,20); 

[g3, redinfo3] = bstmr(G,[10:2:18]);

[g4, redinfo4] = bstmr(G,'MaxError',[0.01, 0.05]);

for i = 1:4

    figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

More About

Algorithms

Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the kth order reduced model.

1 Find the controllability grammian P and observability grammian Q of the left
spectral factor Φ = Γ(σ)Γ*(–σ) = Ω*(–σ)Ω(σ) by solving the following Lyapunov and
Riccati equations
AP + PAT + BBT = 0
BW = PCT + BDT

QA + AT Q + (QBW – CT) (–DDT) (QBW – CT)T = 0

2 Find the Schur decomposition for PQ in both ascending and descending order,
respectively,
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V PQV

V PQV
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3 Find the left/right orthonormal eigen-bases of PQ associated with the kth big Hankel
singular values of the all-pass phase matrix (W*(s))–1G(s).

                                      k

V V V

V V V

A R SMALL L BIG

k

D R BIG L SMALL

=

=

[ , ]

[ , ]

, ,

, ,

674 84

674 84

4 Find the SVD of (VT 
L,BIGVR,BIG) = U Σ ςΤ

5 Form the left/right transformation for the final kth order reduced model
SL,BIG = VL,BIG U Σ(1:k,1:k)–½

SR,BIG = VR,BIG V Σ(1:k,1:k)–½

6 Finally,
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The proof of the Schur BST algorithm can be found in [1].

Note The BST model reduction theory requires that the original model D matrix be full
rank, for otherwise the Riccati solver fails. For any problem with strictly proper model,
you can shift the jω-axis via bilin such that BST/REM approximation can be achieved
up to a particular frequency range of interests. Alternatively, you can attach a small
but full rank D matrix to the original problem but remove the D matrix of the reduced
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order model afterwards. As long as the size of D matrix is insignificant inside the control
bandwidth, the reduced order model should be fairly close to the true model. By default,
the bstmr program will assign a full rank D matrix scaled by 0.001 of the minimum
eigenvalue of the original model, if its D matrix is not full rank to begin with. This serves
the purpose for most problems if user does not want to go through the trouble of model
pretransformation.

References

[1] Zhou, K., “Frequency-weighted model reduction with L∞ error bounds,” Syst. Contr.
Lett., Vol. 21, 115-125, 1993.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust Control: A Schur
Relative Error Method,” International J. of Adaptive Control and Signal
Processing, Vol. 2, p. 259-272, 1988.

See Also
reduce | balancmr | hankelmr | schurmr | ncfmr | hankelsv
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complexify

Replace ureal atoms by summations of ureal and ucomplex (or ultidyn) atoms

Syntax

MC = complexify(M,alpha)

MC = complexify(M,alpha,'ultidyn')

Description

The command complexify replaces ureal atoms with sums of ureal and ucomplex
atoms using usubs. Optionally, the sum can consist of a ureal and ultidyn atom.

complexify is used to improve the conditioning of robust stability calculations
(robuststab) for situations when there are predominantly ureal uncertain elements.

MC = complexify(M,alpha) results in each ureal atom in MC having the same Name
and NominalValue as the corresponding ureal atom in M. If Range is the range of one
ureal atom from M, then the range of the corresponding ureal atom in MC is

[Range(1)+alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]

The net effect is that the same real range is covered with a real and complex uncertainty.
The real parameter range is reduced by equal amounts at each end, and alpha
represents (in a relative sense) the reduction in the total range. The ucomplex atom will
add this reduction in range back into MC, but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to
alpha*diff(Range). Its name is the name of the original ureal atom, appended with
the characters '_cmpxfy'.

MC = complexify(M,alpha,'ultidyn') is the same, except that gain-bounded
ultidyn atoms are used instead of ucomplex atoms. The ultidyn atom has its Bound
equal to alpha*diff(Range).
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Examples

Complexified Uncertain Parameter

To illustrate complexification, create a uncertain real parameter, cast it to an uncertain
matrix, and apply a 10% complexification.

a = umat(ureal('a',2.25,'Range',[1.5 3]));

b = complexify(a,.1);

as = usample(a,200);

bs = usample(b,4000);

Make a scatter plot of the values that the complexified matrix (scalar) can take, as well
as the values of the original uncertain real parameter.

plot(real(bs(:)),imag(bs(:)),'.',real(as(:)),imag(as(:)),'r.')

axis([1 3.5 -0.2 0.2])
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• Getting Reliable Estimates of Robustness Margins

See Also
icomplexify | robuststab

../examples/getting-reliable-estimates-of-robustness-margins.html
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cmsclsyn
Approximately solve constant-matrix, upper bound µ-synthesis problem

Syntax
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,'random',N)

Description

cmsclsyn approximately solves the constant-matrix, upper bound µ-synthesis problem
by minimization,

min
Q C

r t R UQV∈ × +( )µ∆

for given matrices R ∊ Cnxm, U ∊ Cnxr, V ∊ Ctxm, and a set Δ ⊂ Cmxn. This applies to
constant matrix data in R, U, and V.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure) minimizes, by choice of
Q. QOPT is the optimum value of Q, the upper bound of mussv(R+U*Q*V,BLK),
BND. The matrices R,U and V are constant matrices of the appropriate dimension.
BlockStructure is a matrix specifying the perturbation blockstructure as defined for
mussv.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT) uses the options specified
by OPT in the calls to mussv. See mussv for more information. The default value for OPT
is 'cUsw'.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT) initializes the
iterative computation from Q = QINIT. Because of the nonconvexity of the overall
problem, different starting points often yield different final answers. If QINIT is an N-D
array, then the iterative computation is performed multiple times - the i'th optimization
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is initialized at Q = QINIT(:,:,i). The output arguments are associated with the best
solution obtained in this brute force approach.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,'random',N) initializes
the iterative computation from N random instances of QINIT. If NCU is the number of
columns of U, and NRV is the number of rows of V, then the approximation to solving the
constant matrix µ synthesis problem is two-fold: only the upper bound for µ is minimized,
and the minimization is not convex, hence the optimum is generally not found. If U is
full column rank, or V is full row rank, then the problem can (and is) cast as a convex
problem, [Packard, Zhou, Pandey and Becker], and the global optimizer (for the upper
bound for µ) is calculated.

More About

Algorithms

The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and computing
the mussv upper bound, followed by holding the upper bound multipliers fixed, and
minimizing the bound implied by choice of Q. If U or V is square and invertible, then the
optimization is reformulated (exactly) as an linear matrix inequality, and solved directly,
without resorting to the iteration.

References

Packard, A.K., K. Zhou, P. Pandey, and G. Becker, “A collection of robust control
problems leading to LMI's,” 30th IEEE Conference on Decision and Control, Brighton,
UK, 1991, p. 1245–1250.

See Also
dksyn | hinfsyn | mussv | robuststab | robustperf
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controlSystemTuner
Open Control System Tuner

Syntax

controlSystemTuner

controlSystemTuner(CL)

controlSystemTuner(mdl)

controlSystemTuner(ST)

controlSystemTuner(sessionfile)

Description

controlSystemTuner opens the Control System Tuner app. This app lets you to tune
any control system architecture to meet your design goals. You can tune multiple fixed-
order, fixed-structure control elements distributed over one or more feedback loops.
You can tune control systems modeled in MATLAB® or in Simulink (requires Simulink
Control Design™ software). When invoked without input arguments, Control System
Tuner opens to for tuning the default single-loop feedback control system architecture.

controlSystemTuner(CL) opens the app for tuning the control architecture specified
in the genss model CL.

controlSystemTuner(mdl) opens the app for tuning blocks in a Simulink model.

controlSystemTuner(ST) opens the app for tuning a Simulink model associated with
an slTuner interface, ST. Control System Tuner takes information such as analysis
points and operating points from ST.

controlSystemTuner(sessionfile) opens the app and loads a previously saved
session.

Examples
• “Specify Control Architecture in Control System Tuner”
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Input Arguments

CL — Control system to tune
generalized state-space (genss) model

Control system to tune, specified as a generalized state-space genss model. If your
control architecture does not match Control System Tuner’s predefined control
architecture, create a generalized state-space (genss) model with tunable components
representing your controller elements. Build the genss model from fixed-value LTI
models and tunable Control Design Blocks. For more information, see “Building Tunable
Models”.

mdl — Control system to tune
string

Control system to tune, specified as a string.

If you have Simulink Control Design software, you can model an arbitrary control system
architecture in a Simulink model and tune the model in Control System Tuner. The
string mdl is the name of a Simulink model saved in the current working directory or on
the MATLAB path.

ST — Interface to Simulink model of control system to tune
slTuner interface

Interface to a Simulink model of the control system to tune, specified as an slTuner
interface. Use an slTuner interface to preconfigure analysis points, operating points
for linearization, and other aspects of the tuning session. When you use the syntax
controlSystemTuner(ST) to open Control System Tuner, the app takes this
configuration from the slTuner interface.

sessionfile — Saved Control System Tuner session data
string

Saved Control System Tuner session data, specified as a string.

When you use Control System Tuner, you can click  Save Session to save session
data to disk such as tuning goals you have created, response I/Os you have defined,
operating points, and stored designs. The string sessionfile is the name of a session data
file saved in the current working directory or on the MATLAB path. The software also
opens the Simulink model associated with the saved session.
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More About
• “Tuning with Control System Tuner”

See Also
slTuner
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cpmargin
Coprime stability margin of plant-controller feedback loop

Syntax
[MARG,FREQ] = cpmargin(P,C)

[MARG,FREQ] = cpmargin(P,C,TOL)

Description

[MARG,FREQ] = cpmargin(P,C) calculates the normalized coprime factor/gap metric
robust stability of the multivariable feedback loop consisting of C in negative feedback
with P. C should only be the compensator in the feedback path, not any reference
channels, if it is a two degree-of-freedom (2-Dof) architecture. The output MARG contains
upper and lower bound for the normalized coprime factor/gap metric robust stability
margin. FREQ is the frequency associated with the upper bound.

[MARG,FREQ] = cpmargin(P,C,TOL) specifies a relative accuracy TOL for calculating
the normalized coprime factor/gap metric robust stability margin. (TOL=1e-3 by default).

See Also
gapmetric | wcmargin
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dcgainmr
Reduced order model

Syntax
[sysr,syse,gain] = dcgainmr(sys,ord)

Description

[sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order model of a
continuous-time LTI system SYS by truncating modes with least DC gain.

Specify your LTI continuous-time system in sys. The order is specified in ord.

This function returns:

• sysr—The reduced order models (a multidimensional array if sys is an LTI array)
• syse—The difference between sys and sysr (syse=sys-sysr)
• gain—The g-factors (dc-gains)

The DC gain of a complex mode

(1/(s+p))*c*b' 

is defined as

norm(b)*norm(c)/abs(p)

See Also
reduce
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decay
Quadratic decay rate of polytopic or affine P-systems

Syntax
[drate,P] = decay(ps,options)

Description

For affine parameter-dependent systems
E(p) &x  = A(p)x, p(t) = (p1(t), . . . , pn(t))

or polytopic systems
E(t) &x  = A(t)x, (A, E) ∊ Co{(A1, E1), . . ., (An, En)}, t) &x  = A(t)x, (A, E) ∊ Co{(A1, E1), . . ., (An,
En)},

decay returns the quadratic decay rate drate, i.e., the smallest α ∊ R such that
ATQE + EQAT < αQ

holds for some Lyapunov matrix Q > 0 and all possible values of (A, E). Two control
parameters can be reset via options(1) and options(2):

• If options(1)=0 (default), decay runs in fast mode, using the least expensive
sufficient conditions. Set options(1)=1 to use the least conservative conditions.

• options(2) is a bound on the condition number of the Lyapunov matrix P. The
default is 109.

See Also
quadstab | psys | pdlstab
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decinfo

Describe how entries of matrix variable X relate to decision variables

Syntax

decinfo(lmisys)

decX = decinfo(lmisys,X)

Description

The function decinfo expresses the entries of a matrix variable X in terms of the decision
variables x1, . . ., xN. Recall that the decision variables are the free scalar variables of the
problem, or equivalently, the free entries of all matrix variables described in lmisys.
Each entry of X is either a hard zero, some decision variable xn, or its opposite –xn.

If X is the identifier of X supplied by lmivar, the command

decX = decinfo(lmisys,X)

returns an integer matrix decX of the same dimensions as X whose (i, j) entry is

• 0 if X(i, j) is a hard zero
• n if X(i, j) = xn (the n-th decision variable)
• –n if X(i, j) = –xn

decX clarifies the structure of X as well as its entry-wise dependence on x1, . . ., xN. This
is useful to specify matrix variables with atypical structures (see lmivar).

decinfo can also be used in interactive mode by invoking it with a single argument. It
then prompts the user for a matrix variable and displays in return the decision variable
content of this variable.
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Examples

Example 1

Consider an LMI with two matrix variables X and Y with structure:

• X = x I3 with x scalar
• Y rectangular of size 2-by-1

If these variables are defined by

setlmis([]) 

X = lmivar(1,[3 0]) 

Y = lmivar(2,[2 1]) 

 : 

 : 

lmis = getlmis

the decision variables in X and Y are given by

dX = decinfo(lmis,X)

dX = 

 1  0  0 

 0  1  0 

 0  0  1

dY = decinfo(lmis,Y)

dY = 

 2 

 3

This indicates a total of three decision variables x1, x2, x3 that are related to the entries of
X and Y by

X

x

x

x

Y
x

x
=

















=










1

1

1

2

0 0

0 0

0 0
3

,

Note that the number of decision variables corresponds to the number of free entries in X
and Y when taking structure into account.
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Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block
and one 2-by-2 scalar block, and is declared by

setlmis([]) 

X = lmivar(1,[2 1;2 0]) 

  : 

lmis = getlmis

The decision variable distribution in X can be visualized interactively as follows:
decinfo(lmis)

There are 4 decision variables labeled x1 to x4 in this problem.

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 1

The decision variables involved in X1 are among {-x1,...,x4}.

Their entry-wise distribution in X1 is as follows

        (0,j>0,-j<0 stand for 0,xj,-xj, respectively):

X1 :

 1  2  0  0 

 2  3  0  0 

 0  0  4  0 

 0  0  0  4

 

    *********

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 0

See Also
lmivar | mat2dec | dec2mat
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decnbr
Total number of decision variables in system of LMIs

Syntax
ndec = decnbr(lmisys)

Description

The function decnbr returns the number ndec of decision variables (free scalar
variables) in the LMI problem described in lmisys. In other words, ndec is the length of
the vector of decision variables.

Examples

For an LMI system lmis with two matrix variables X and Y such that

• X is symmetric block diagonal with one 2-by-2 full block, and one 2-by-2 scalar block
• Y is 2-by-3 rectangular,

the number of decision variables is

ndec = decnbr(LMIs)

ndec = 

       10

This is exactly the number of free entries in X and Y when taking structure into account
(see decinfo for more details).

See Also
dec2mat | decinfo | mat2dec
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dec2mat
Given values of decision variables, derive corresponding values of matrix variables

Syntax
valX = dec2mat(lmisys,decvars,X)

Description

Given a value decvars of the vector of decision variables, dec2mat computes the
corresponding value valX of the matrix variable with identifier X. This identifier is
returned by lmivar when declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI problem and
correspond to the free entries of the matrix variables X1, . . ., XK. Since LMI solvers
return a feasible or optimal value of the vector of decision variables, dec2mat is useful to
derive the corresponding feasible or optimal values of the matrix variables.

Examples

See the description of feasp.

See Also
mat2dec | decnbr | decinfo
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defcx

Help specify cTx objectives for mincx solver

Syntax
[V1,...,Vk] = defcx(lmisys,n,X1,...,Xk)

Description

defcx is useful to derive the c vector needed by mincx when the objective is expressed in
terms of the matrix variables.

Given the identifiers X1,...,Xk of the matrix variables involved in this objective, defcx
returns the values V1,...,Vk of these variables when the n-th decision variable is set to
one and all others to zero.

See Also
mincx | decinfo
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dellmi
Remove LMI from system of LMIs

Syntax
newsys = dellmi(lmisys,n)

Description

dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The updated
system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds
to the identifier returned by newlmi. Since this ranking is not modified by deletions, it
is safer to refer to the remaining LMIs by their identifiers. Finally, matrix variables that
only appeared in the deleted LMI are removed from the problem.

Examples

Suppose that the three LMIs

A X X A Q

A X X A Q

A X X A Q

T

T

T

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

0

0

0

+ + <

+ + <

+ + <

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi, and stored in
lmisys. To delete the second LMI, type

lmis = dellmi(lmisys,LMI2)

lmis now describes the system of LMIs

A X X A Q

A X X A Q

T

T

1 1 1 1 1

3 3 3 3 3

0

0

+ + <

+ + <
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and the second variable X2 has been removed from the problem since it no longer appears
in the system.

To further delete LMI3 from the system, type

lmis = dellmi(lmis,LMI3)

or equivalently

lmis = dellmi(lmis,3)

Note that the system has retained its original ranking after the first deletion.

See Also
newlmi | lmiedit | lmiinfo
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delmvar
Remove one matrix variable from LMI problem

Syntax
newsys = delmvar(lmisys,X)

Description

delmvar removes the matrix variable X with identifier X from the list of variables
defined in lmisys. The identifier X should be the second argument returned by lmivar
when declaring X. All terms involving X are automatically removed from the list of LMI
terms. The description of the resulting system of LMIs is returned in newsys.

Examples

Consider the LMI

0 <
+ + +

+ − +













A Y B YA Q CX D

X C D X X

T T

T T T T
( )

involving two variables X and Y with identifiers X and Y. To delete the variable X, type

lmisys = delmvar(lmisys,X)

Now lmisys describes the LMI

0

0

<
+ +











A YB B YA Q D

D

T T

T

with only one variable Y. Note that Y is still identified by the label Y.

See Also
lmivar | setmvar | lmiinfo
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diag
Diagonalize vector of uncertain matrices and systems

Syntax
v = diag(x)

Description

If x is a vector of uncertain system models or matrices, diag(x) puts x on the main
diagonal. If x is a matrix of uncertain system models or matrices, diag(x) is the main
diagonal of x. diag(diag(x)) is a diagonal matrix of uncertain system models or
matrices.

Examples

The statement produces a diagonal system mxg of size 4-by-4. Given multivariable
system xx, a vector of the diagonal elements of xxg is found using diag.

x = rss(3,4,1); 

xg = frd(x,logspace(-2,2,80)); 

size(xg) 

FRD model with 4 output(s) and 1 input(s), at 80 frequency point(s). 

mxg = diag(xg); 

size(mxg) 

FRD model with 4 output(s) and 4 input(s), at 80 frequency point(s). 

xxg = [xg(1:2,1) xg(3:4,1)]; 

m = diag(xxg); 

size(m) 

FRD model with 2 output(s) and 1 input(s), at 80 frequency point(s). 

See Also
append
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dksyn
Robust controller design using µ-synthesis

Syntax
[k,clp,bnd] = dksyn(p,nmeas,ncont)

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)

 [...] = dksyn(p)

Description

[k,clp,bnd] = dksyn(p,nmeas,ncont) synthesizes a robust controller k for the
uncertain open-loop plant model p via the D-K or D-G-K algorithm for µ-synthesis. p is
an uncertain state-space uss model. The last nmeas outputs and ncont inputs of p
are assumed to be the measurement and control channels. k is the controller, clp is the
closed-loop model and bnd is the robust closed-loop performance bound. p, k, clp, and
bnd are related as follows:

        clp = lft(p,k); 

        bnd1 = robustperf(clp); 

        bnd = 1/bnd.LowerBound

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt) specifies user-defined options opt for
the D-K or D-K-G algorithm. Use dksynOptions to create opt.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...) returns a log of the algorithm
execution in dkinfo. dkinfo is an N-by-1 cell array where N is the total number of
iterations performed. The ith cell contains a structure with the following fields:

Field Description

K Controller at ith iteration, a ss object
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Field Description

Bnds Robust performance bound on the closed-loop system (double)
DL Left D-scale, an ss object
DR Right D-scale, an ss object
GM Offset G-scale, an ss object
GR Right G-scale, an ss object
GFC Center G-scale, an ss object
MussvBnds Upper and lower µ bounds, an frd object
MussvInfo Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)

allows you to use information from a previous dksyn iteration.

prevdkinfo is a structure from a previous attempt at designing a robust controller
using dksyn. prevdkinfo is used when the dksyn starting iteration is not 1
(opt.StartingIterationNumber = 1) to determine the correct D-scalings to initiate
the iteration procedure.

[...] = dksyn(p) takes p as a uss object that has two-input/two-output partitioning
as defined by mktito.

Examples

The following statements create a robust performance control design for an unstable,
uncertain single-input/single-output plant model. The nominal plant model, G, is an

unstable first order system s

s −1
.

G = tf(1,[1 -1]); 

The model itself is uncertain. At low frequency, below 2 rad/s, it can vary up to 25% from
its nominal value. Around 2 rad/s the percentage variation starts to increase and reaches
400% at approximately 32 rad/s. The percentage model uncertainty is represented by the
weight Wu which corresponds to the frequency variation of the model uncertainty and the
uncertain LTI dynamic object InputUnc.
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Wu = 0.25*tf([1/2 1],[1/32 1]); 

InputUnc = ultidyn('InputUnc',[1 1]);

The uncertain plant model Gpert represents the model of the physical system to be
controlled.

Gpert = G*(1+InputUnc*Wu); 

The robust stability objective is to synthesize a stabilizing LTI controller for all the plant
models parameterized by the uncertain plant model, Gpert. The performance objective
is defined as a weighted sensitivity minimization problem. The control interconnection
structure is shown in the following figure.

The sensitivity function, S, is defined as

S
PK

=
+
1

1

where P is the plant model and K is the controller. A weighted sensitivity minimization
problem selects a weight Wp, which corresponds to the inverse of the desired sensitivity
function of the closed-loop system as a function of frequency. Hence the product of the
sensitivity weight Wp and actual closed-loop sensitivity function is less than 1 across
all frequencies. The sensitivity weight Wp has a gain of 100 at low frequency, begins to
decrease at 0.006 rad/s, and reaches a minimum magnitude of 0.25 after 2.4 rad/s.

Wp = tf([1/4 0.6],[1 0.006]);

The defined sensitivity weight Wp implies that the desired disturbance rejection should
be at least 100:1 disturbance rejection at DC, rise slowly between 0.006 and 2.4 rad/s,
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and allow the disturbance rejection to increase above the open-loop level, 0.25, at high
frequency.

When the plant model is uncertain, the closed-loop performance objective is to achieve
the desired sensitivity function for all plant models defined by the uncertain plant model,
Gpert. The performance objective for an uncertain system is a robust performance
objective. A block diagram of this uncertain closed-loop system illustrating the
performance objective (closed-loop transfer function from d→e) is shown.

From the definition of the robust performance control objective, the weighted, uncertain
control design interconnection model, which includes the robustness and performance
objectives, can be constructed and is denoted by P. The robustness and performance
weights are selected such that if the robust performance structure singular value, bnd,
of the closed-loop uncertain system, clp, is less than 1 then the performance objectives
have been achieved for all the plant models in the model set.

You can form the uncertain transfer matrix P from [d; u] to [e; y] using the
following commands.

P = [Wp; 1 ]*[1 Gpert]; 

[K,clp,bnd] = dksyn(P,1,1); 

bnd

bnd = 

    0.6819 

The controller K achieves a robust performance µ value bnd of 0.6819. Therefore you have
achieved the robust performance objectives for the given problem.

You can use the robustperf command to analyze the closed-loop robust performance of
clp.

[rpmarg,rpmargunc,report,info] = robustperf(clp); 
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Enter disp(report) to display the report.

Limitations

There are two shortcomings of the D-K iteration control design procedure:

• Calculation of the structured singular value µΔ(·) is approximated by its upper bound.
This is not a serious problem because the value of µ and its upper bound are often
close.

• The D-K iteration is not guaranteed to converge to a global, or even local minimum.
This is a serious problem, and represents the biggest limitation of the design
procedure.

In spite of these drawbacks, the D-K iteration control design technique appears to work
well on many engineering problems. It has been applied to a number of real-world
applications with success. These applications include vibration suppression for flexible
structures, flight control, chemical process control problems, and acoustic reverberation
suppression in enclosures.

Tutorials

Control of Spring-Mass-Damper Using Mixed mu-Synthesis

More About

Algorithms

dksyn synthesizes a robust controller via D-K iteration. The D-K iteration procedure
is an approximation to µ-synthesis control design. The objective of µ-synthesis is to
minimize the structure singular value µ of the corresponding robust performance
problem associated with the uncertain system p. The uncertain system p is an open-
loop interconnection containing known components including the nominal plant model,
uncertain parameters, ucomplex, and unmodeled LTI dynamics, ultidyn, and
performance and uncertainty weighting functions. You use weighting functions to include
magnitude and frequency shaping information in the optimization. The control objective
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is to synthesize a stabilizing controller k that minimizes the robust performance µ value,
which corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first over the
controller variable K (holding the D variable associated with the scaled µ upper bound
fixed), and then over the D variable (holding the controller K variable fixed). The D-K
iteration procedure is not guaranteed to converge to the minimum µ value, but often
works well in practice.

dksyn automates the D-K iteration procedure and the options object dksynOptions
allows you to customize its behavior. Internally, the algorithm works with the
generalized scaled plant model P, which is extracted from a uss object using the
command lftdata.

The following is a list of what occurs during a single, complete step of the D-K iteration.

1 (In the first iteration, this step is skipped.) The µ calculation (from the previous step)
provides a frequency-dependent scaling matrix, Df. The fitting procedure fits these
scalings with rational, stable transfer function matrices. After fitting, plots of

σ ω ω ωˆ ( ) ( , )( ) ( )D j F P K j D jf L f
−( )1

and

σ ω ω ωˆ ( ) ( , )( ) ˆ ( )D j F P K j D jf L f
−( )1

are shown for comparison.

(In the first iteration, this step is skipped.) The rational D̂ is absorbed into the open-
loop interconnection for the next controller synthesis. Using either the previous
frequency-dependent D's or the just-fit rational D̂ , an estimate of an appropriate
value for the H∞ norm is made. This is simply a conservative value of the scaled
closed-loop H∞ norm, using the most recent controller and either a frequency sweep
(using the frequency-dependent D's) or a state-space calculation (with the rational
D's).

2 (The first iteration begins at this point.) A controller is designed using H∞ synthesis
on the scaled open-loop interconnection. If you set the DisplayWhileAutoIter field
in dksynOptions to 'on', the following information is displayed:
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a The progress of the γ-iteration is displayed.
b The singular values of the closed-loop frequency response are plotted.
c You are given the option to change the frequency range. If you change it, all

relevant frequency responses are automatically recomputed.
d You are given the option to rerun the H∞ synthesis with a set of modified

parameters if you set the AutoIter field in dksynOptions to 'off'. This is
convenient if, for instance, the bisection tolerance was too large, or if maximum
gamma value was too small.

3 The structured singular value of the closed-loop system is calculated and plotted.
4 An iteration summary is displayed, showing all the controller order, as well as the

peak value of µ of the closed-loop frequency responses.
5 The choice of stopping or performing another iteration is given.

Subsequent iterations proceed along the same lines without the need to reenter the
iteration number. A summary at the end of each iteration is updated to reflect data from
all previous iterations. This often provides valuable information about the progress of the
robust controller synthesis procedure.

Interactive Fitting of D-Scalings

Setting the AutoIter field in dksynOptions to 'off' requires that you interactively
fit the D-scales each iteration. During step 2 of the D-K iteration procedure, you are
prompted to enter your choice of options for fitting the D-scaling data. You press return
after, the following is a list of your options.

Enter Choice (return for list):

Choices:

nd          Move to Next D-Scaling

nb          Move to Next D-Block

i           Increment Fit Order

d           Decrement Fit Order

apf         Auto-PreFit

mx 3        Change Max-Order to 3

at 1.01     Change Auto-PreFit tol to 1.01

0           Fit with zeroth order

2           Fit with second order

n           Fit with n'th order
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e           Exit with Current Fittings

s           See Status

• nd and nb allow you to move from one D-scale data to another. nd moves to the next
scaling, whereas nb moves to the next scaling block. For scalar D-scalings, these are
identical operations, but for problems with full D-scalings, (perturbations of the form
δI) they are different. In the (1,2) subplot window, the title displays the D-scaling
block number, the row/column of the scaling that is currently being fitted, and the
order of the current fit (with d for data when no fit exists).

• You can increment or decrement the order of the current fit (by 1) using i and d.
• apf automatically fits each D-scaling data. The default maximum state order of

individual D-scaling is 5. The mx variable allows you to change the maximum D-
scaling state order used in the automatic prefitting routine. mx must be a positive,
nonzero integer. at allows you to define how close the rational, scaled µ upper bound
is to approximate the actual µ upper bound in a norm sense. Setting at to 1 would
require an exact fit of the D-scale data, and is not allowed. Allowable values for at
are greater than 1. This setting plays a role (mildly unpredictable, unfortunately) in
determining where in the (D,K) space the D-K iteration converges.

• Entering a positive integer at the prompt will fit the current D-scale data with that
state order rational transfer function.

• e exits the D-scale fitting to continue the D-K iteration.
• The variable s displays a status of the current and fits.
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See Also
dksynOptions | mktito | mussv | h2syn | hinfsyn | robuststab | robustperf |
wcgain | wcsens | wcmargin
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dksynOptions
Set options for dksyn

Syntax

opt = dksynOptions

opt = dksynOptions(Name,Value)

Description

opt = dksynOptions returns the default options for dksyn.

opt = dksynOptions(Name,Value) returns an option set with additional options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

dksynOptions takes the following Name arguments:

'FrequencyVector'

Frequencies for mu-analysis, specified as a vector. When empty, dksyn automatically
chooses the frequency range and number of points.

Default: []

'InitialController'

Controller for initializing first iteration, specified as a state-space (ss) model.
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Default:  []

'AutoIter'

Automated mu-synthesis mode, specified as one of the strings 'on' or 'off'. When
automated mu-synthesis mode is off, dksyn performs an interactive D-K iteration
procedure. You are prompted to fit the D-scale data and provide input on the control
design process.

Default: 'on'

'DisplayWhileAutoIter'

Status of display in automated mu-synthesis mode, specified as one of the strings 'off'
or 'on'. When the display is on, and automated mu-synthesis mode is active, dksyn
displays the iteration progress during the synthesis computation.

Default: 'off'

'StartingIterationNumber'

Iteration number for initiating iteration procedure, specified as a positive integer. Use
this option when you provide the prevdkinfo argument to dksyn to use information
from a previous dksyn calculation. In this case, specify the starting iteration number
from which to resume the iteration procedure.

Default: 1

'NumberOfAutoIterations'

Number of iterations to perform in automatic mu-synthesis mode, specified as a positive
integer.

Default: 10

'MixedMU'

Flag indicating whether to perform mixed real/complex mu-synthesis when real
parameters are present, specified as one of the strings 'off' or 'on'. Mixed mu-
synthesis accounts for uncertain real parameters directly in the synthesis process.
Setting 'MixedMU' to 'on' when you have uncertain real parameters can result in
improved robust performance of the synthesized controller.
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Default: 'off'

'AutoScalingOrder'

State order for fitting D-scaling and G-scaling data for real/complex mu-synthesis,
specified as a vector of the form [dorder,gorder].

Default: [5 2] (5th-order D-scalings and 2nd-order G-scalings)

'AutoIterSmartTerminate'

Automatic termination mode, specified as one of the strings 'on' or 'off'. When
AutoIterSmartTerminate is 'on', the iteration procedure terminates based on
the progress of the design iteration. Set the tolerance for automatic termination using
AutoIterSmartTerminateTol.

In automatic termination mode, the iteration procedure terminates when a stopping
criterion is satisfied. The stopping criterion involves the objective value (peak value,
across frequency, of the upper bound for µ) in the current iteration, denoted v0. The
stopping criterion also involves the objective value in the previous two iterations, denoted
v–1 and v–2. The stopping criterion is satisfied for lack of progress if:

v v AutoIterSmartTerminateTol v0 1 0- <
-

* ,

and

v v AutoIterSmartTerminateTol v
- -

- <1 2 0* .

The stopping criteria is also satisfied for an undesirable significant increase in the
objective value if:

v v AutoIterSmartTerminateTol v0 1 020> +
-

* * .

Default: 'on'

'AutoIterSmartTerminateTol'

Tolerance for AutoIterSmartTerminate mode.

Default: 0.005
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Output Arguments

options

Option set containing the specified options for the dksyn command.

Examples

Create Options Set for dksyn

Create an options set for a dksyn run using a logarithmic distribution of frequency
points for analysis and performing 24 iterations.

options = dksynOptions('FrequencyVector',logspace(-2,3,80),...

                       'NumberOfAutoIterations',24);

Alternatively, use dot notation to set the values of options.

options = dksynOptions;

options.FrequencyVector = logspace(-2,3,80);

options.NumberOfAutoIterations = 24;

See Also
| dksyn
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dmplot
Interpret disk gain and phase margins

Syntax
dmplot

dmplot(diskgm)

[dgm,dpm] = dmplot

Description
dmplot plots disk gain margin (dgm) and disk phase margin (dpm). Both margins are
derived from the largest disk that

• Contains the critical point (–1,0)
• Does not intersect the Nyquist plot of the open-loop response L

diskgm is the radius of this disk and a lower bound on the classical gain margin.

dmplot(diskgm) plots the maximum allowable phase variation as a function of the
actual gain variation for a given disk gain margin diskgm (the maximum gain variation
being diskgm). The closed-loop system is guaranteed to remain stable for all combined
gain/phase variations inside the plotted ellipse.

[dgm,dpm] = dmplot returns the data used to plot the gain/phase variation ellipse.

Examples
When you call dmplot (without an argument), the resulting plot shows a comparison of a
disk margin analysis with the classical notations of gain and phase margins. The Nyquist
plot is of the loop transfer function L(s)

L s

s

s s s

( )
( )( . )

=
+

+ + +
30
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1 1 6 16
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dmplot

                                                         

This figure shows a comparison of a disk margin analysis 

with the classical notations of gain and phase margins.  

The Nyquist plot is of the loop transfer function        

                                                         

         L = 4(s/30 + 1)/((s+1)*(s^2 + 1.6s + 16))       

                                                         

 - The Nyquist plot of L corresponds to the blue line    

 - The unit disk corresponds to the dotted red line      

 - GM and PM indicate the location of the classical gain 

    and phase margins for the system L.                  

 - DGM and DPM correspond to the disk gain and phase     

   margins. The disk margins provide a lower bound on    

   classical gain and phase margins.                     

 - The disk margin circle corresponds to the dashed black

   line. The disk margin corresponds to the largest disk 

   centered at (GMD + 1/GMD)/2 that just touches the     

   loop transfer function L. This location is indicated  

   by the red dot.                                       
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• The Nyquist plot of L corresponds to the blue line.
• The unit disk corresponds to the dotted red line.
• GM and PM indicate the location of the classical gain and phase margins for the

system L.
• DGM and DPM correspond to the disk gain and phase margins, respectively. The disk

margins provide a lower bound on classical gain and phase margins.
• The disk margin circle, represented by the dashed black line, corresponds to the

largest disk centered at (DGM + 1/DGM)/2 that just touches the loop transfer
function L. This location is indicated by the red dot.
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The x-axis corresponds to the gain variation, in dB, and the y-axis corresponds to the
phase variation allowable, in degrees. For a disk gain margin corresponding to 3 dB
(1.414), the closed-loop system is stable for all phase and gain variations inside the blue
ellipse. For example, the closed-loop system can simultaneously tolerate +/– 2 dB gain
variation and +/– 14 deg phase variations.

dmplot(1.414)

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems,
Ph.D. Thesis. Control Science and Dynamical Systems, University of Minnesota, 1980.
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Blight, J.D., R.L. Dailey, and Gangsass, D., “Practical control law design for aircraft
using multivariable techniques,” International Journal of Control, Vol. 59, No. 1, 1994,
93-137.

Bates, D., and I. Postlethwaite, Robust Multivariable Control of Aerospace Systems,
Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also
wcmargin
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drawmag
Mouse-based tool for sketching and fitting

Syntax
[sysout,pts] = drawmag(data)

[sysout,pts] = drawmag(data,init_pts)

Description

drawmag interactively uses the mouse in the plot window to create pts (the frd object)
and sysout (a stable minimum-phase ss object), which approximately fits the frequency
response (magnitude) in pts.

Input arguments:

data Either a frequency response object that is plotted as a reference, or
a constant matrix of the form [xmin xmax ymin ymax] specifying the plot
window on the data.

init_pts Optional frd objects of initial set of points

Output arguments:

sysout Stable, minimum-phase ss object that approximately fits, in
magnitude, the pts data.

pts Frequency response of points.

While drawmag is running, all interaction with the program is through the mouse and/
or the keyboard. The mouse, if there is one, must be in the plot window. The program
recognizes several commands:

• Clicking the mouse button adds a point at the cross-hairs. If the cross-hairs are
outside the plotting window, the points are plotted when the fitting, windowing, or
replotting mode is invoked. Typing a is the same as clicking the mouse button.

• Typing r removes the point with frequency nearest that of the cross-hairs.
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• Typing any integer between 0 and 9 fits the existing points with a transfer function
of that order. The fitting routine approximately minimizes the maximum error in a
log sense. The new fit is displayed along with the points, and the most recent previous
fit, if it exists.

• Typing w uses the cross-hair location as the initial point in creating a window. Moving
the cross-hairs and clicking the mouse or pressing any key then gives a second point
at the new cross-hair location. These two points define a new window on the data,
which is immediately replotted. This is useful in fine tuning parts of the data. You can
call windowing repeatedly.

• Typing p simply replots the data using a window that covers all the current data
points as well as whatever was specified in in. Typically used after windowing to view
all the data.

• Typing k invokes the keyboard using the keyboard command. Be cautious when
using this option to avoid unintended changes to variables.

See Also
ginput | loglog
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evallmi

Given particular instance of decision variables, evaluate all variable terms in system of
LMIs

Syntax

evalsys = evallmi(lmisys,decvars)

Description

evallmi evaluates all LMI constraints for a particular instance decvars of the vector
of decision variables. Recall that decvars fully determines the values of the matrix
variables X1, . . ., XK. The “evaluation” consists of replacing all terms involving X1, . . ., XK
by their matrix value. The output evalsys is an LMI system containing only constant
terms.

The function evallmi is useful for validation of the LMI solvers' output. The vector
returned by these solvers can be fed directly to evallmi to evaluate all variable terms.
The matrix values of the left and right sides of each LMI are then returned by showlmi.

Observation

evallmi is meant to operate on the output of the LMI solvers. To evaluate all LMIs
for particular instances of the matrix variables X1, . . ., XK, first form the corresponding
decision vector x with mat2dec and then call evallmi with x as input.

Examples

Consider the feasibility problem of finding X > 0 such that
ATXA – X + I < 0

where
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A =
−
−











0 5 0 2

0 1 0 7

. .

. .
.

This LMI system is defined by:

setlmis([]) 

X = lmivar(1,[2 1])     % full symmetric X

lmiterm([1 1 1 X],A',A)     % LMI #1: A'*X*A 

lmiterm([1 1 1 X],-1,1)         % LMI #1: -X 

lmiterm([1 1 1 0],1)     % LMI #1: I 

lmiterm([-2 1 1 X],1,1)     % LMI #2: X 

lmis = getlmis

To compute a solution xfeas, call feasp by

[tmin,xfeas] = feasp(lmis)

The result is

tmin = 

    -4.7117e+00

xfeas' = 

    1.1029e+02      -1.1519e+01      1.1942e+02

The LMI constraints are therefore feasible since tmin < 0. The solution X corresponding
to the feasible decision vector xfeas would be given by X = dec2mat(lmis,xfeas,X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

evals = evallmi(lmis,xfeas)

The left and right sides of the first and second LMIs are then given by

[lhs1,rhs1] = showlmi(evals,1) 

[lhs2,rhs2] = showlmi(evals,2)

and the test

eig(lhs1-rhs1)

ans = 

    -8.2229e+01 

    -5.8163e+01
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confirms that the first LMI constraint is satisfied by xfeas.

See Also
showlmi | setmvar | dec2mat | mat2dec
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evalSpec

Evaluate tuning requirements for tuned control system

Syntax

[Hspec,fval] = evalSpec(Req,T)

[Hspec,fval] = evalSpec(Req,T,Info)

Description

[Hspec,fval] = evalSpec(Req,T) returns the normalized value, fval, of a tuning
requirement evaluated for a tuned control system T. The evalSpec command also
returns the transfer function, Hspec, used to compute this value.

[Hspec,fval] = evalSpec(Req,T,Info) uses the Info structure returned by
systune for correct scaling of MIMO open-loop requirements, such as loop shapes and
stability margins.

Examples

Evaluate Requirements for Tuned System

Tune a control system with systune , and evaluate the tuning requirements with
evalSpec.

Open the Simulink® model rct_airframe2.

open_system('rct_airframe2')
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Create tracking, roll-off, stability margin, and disturbance rejection requirements for
tuning the control system.

Req1 = TuningGoal.Tracking('az ref','az',1);

Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));

Req3 = TuningGoal.Margins('delta fin',7,45);

MaxGain = frd([2 200 200],[0.02 2 200]);

Req4 = TuningGoal.Gain('delta fin','az',MaxGain);

Create a slTunable interface and tune the model using these tuning requirements.

ST0 = slTunable('rct_airframe2','MIMO Controller');

addControl(ST0,'delta fin');

rng default

[ST1,fSoft,~,Info] = systune(ST0,[Req1,Req2,Req3,Req4]);

Final: Soft = 1.15, Hard = -Inf, Iterations = 73

ST1 is a tuned version of the slTunable interface to the control system. ST1 contains
the tuned values of the tunable parameters of the MIMO controller in the model.

Evaluate the margin requirement for the tuned system.
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[hspec,fval] = evalSpec(Req3,ST1,Info);

fval

fval =

    0.5434

The normalized value of the requirement is less than 1, indicating that the tuned system
satisfies the margin requirement. For more information about how the normalized value
of this requirement is calculated, see the TuningGoal.Margins reference page.

Evaluate the tracking requirement for the tuned system.

[hspec,fval] = evalSpec(Req1,ST1,Info);

fval

fval =

    1.1460

The tracking requirement is nearly met, but the value exceeds 1, indicating a small
violation. To further assess the violation, you can use viewSpec to examine the
requirement against the tuned control system as a function of frequency.

Input Arguments

Req — Tuning requirement to evaluate
TuningGoal requirement object | vector of TuningGoal objects

Tuning requirement to evaluate, specified as a TuningGoal requirement object or vector
of TuningGoal objects. TuningGoal requirement objects include:

• TuningGoal.Tracking

• TuningGoal.Gain

• TuningGoal.WeightedGain

• TuningGoal.Variance
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• TuningGoal.WeightedVariance

• TuningGoal.LoopShape

• TuningGoal.Margins

• TuningGoal.Poles

• TuningGoal.ControllerPoles

T — Tuned control system
generalized state-space model | slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an
slTuner interface to a Simulink model. T is typically the result of using the tuning
requirement to tune control system parameters with systune.

Example: [T,fSoft,gHard,Info] = systune(T0,SoftReq,HardReq), where T0 is
a tunable genss model

Example: [T,fSoft,gHard,Info] = systune(ST0,SoftReq,HardReq), where ST0
is a slTuner interface object

Info — System information
data structure returned by systune

System information, specified as the data structure returned by systune when you use
that command to tune a control system. Use Info when validating tuned MIMO systems.
Doing so ensures that viewSpec correctly scales open-loop requirements such as loop
shapes and stability margins.

Output Arguments

Hspec — transfer function associated with requirement
state-space model

Transfer function associated with the tuning requirement, returned as a state-space (ss)
model. evalSpec uses Hspec to compute the evaluated requirement, fval.

For example, suppose Req is a TuningGoal gain requirement that limits the gain, H(s),
between some specified input and output to the gain profile, w(s). In that case, Hspec is
given by:
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Hspec s
w s

H s( ) =
( )

( )
1

.

fval is the peak gain of Hspec. If H(s) satisfies the tuning requirement, fval <= 1.

fval — Normalized value of tuning requirement
positive scalar

Normalized value of tuning requirement, returned as a positive scalar. The normalized
value is a measure of how closely the requirement is met in the tuned system. The
tuning requirement is satisfied if fval < 1. For information about how each type of
TuningGoal requirement is converted into a normalized value, see the TuningGoal
requirement objects.

More About
• “Generalized Models”

See Also
TuningGoal.Tracking | TuningGoal.Sensitivity | TuningGoal.Overshoot
| TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain | TuningGoal.Gain |
TuningGoal.Margins | TuningGoal.WeightedGain | TuningGoal.Variance |
TuningGoal.WeightedVariance | TuningGoal.LoopShape | TuningGoal.Poles
| TuningGoal.ControllerPoles | genss | slTuner | systune | systune (for
slTuner) | viewSpec
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feasp

Compute solution to given system of LMIs

Syntax

[tmin,xfeas] = feasp(lmisys,options,target)

Description

The function feasp computes a solution xfeas (if any) of the system of LMIs described
by lmisys. The vector xfeas is a particular value of the decision variables for which all
LMIs are satisfied.

Given the LMI system

N LxN M R x M
T T≤ ( ) ,

xfeas is computed by solving the auxiliary convex program:

Minimize t subject to NTL(x)N–MTR(x)M≤tI.

The global minimum of this program is the scalar value tmin returned as first output
argument by feasp. The LMI constraints are feasible if tmin ≤ 0 and strictly feasible
if tmin < 0. If the problem is feasible but not strictly feasible, tmin is positive and very
small. Some post-analysis may then be required to decide whether xfeas is close enough
to feasible.

The optional argument target sets a target value for tmin. The optimization code
terminates as soon as a value of t below this target is reached. The default value is
target = 0.

Note that xfeas is a solution in terms of the decision variables and not in terms of the
matrix variables of the problem. Use dec2mat to derive feasible values of the matrix
variables from xfeas.
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Control Parameters

The optional argument options gives access to certain control parameters for the
optimization algorithm. This five-entry vector is organized as follows:

• options(1) is not used.
• options(2) sets the maximum number of iterations allowed to be performed by the

optimization procedure (100 by default).
• options(3) resets the feasibility radius. Setting options(3) to a value R > 0

further constrains the decision vector x = (x1, . . ., xN) to lie within the ball

x R
i

i

N
2 2

1

<
=
∑

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility
radius is a simple means of controlling the magnitude of solutions. Upon termination,
feasp displays the f-radius saturation, that is, the norm of the solution as a
percentage of the feasibility radius R.

The default value is R = 109. Setting options(3) to a negative value activates the
“flexible bound” mode. In this mode, the feasibility radius is initially set to 108, and
increased if necessary during the course of optimization

• options(4) helps speed up termination. When set to an integer value J > 0, the code
terminates if t did not decrease by more than one percent in relative terms during the
last J iterations. The default value is 10. This parameter trades off speed vs. accuracy.
If set to a small value (< 10), the code terminates quickly but without guarantee of
accuracy. On the contrary, a large value results in natural convergence at the expense
of a possibly large number of iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure.
Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter
to its default value. Consequently, there is no need to redefine the entire vector when
changing just one control parameter. To set the maximum number of iterations to 10, for
instance, it suffices to type

options=zeros(1,5)       % default value for all parameters 

options(2)=10
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Memory Problems

When the least-squares problem solved at each iteration becomes ill conditioned, the
feasp solver switches from Cholesky-based to QR-based linear algebra (see “Memory
Problems” on page 2-272 for details). Since the QR mode typically requires much more
memory, MATLAB may run out of memory and display the message

??? Error using ==> feaslv 

Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no
additional swap space is available, set options(4) = 1. This will prevent switching to
QR and feasp will terminate when Cholesky fails due to numerical instabilities.

Examples

Consider the problem of finding P > I such that

A P PA
T

1 1
0+ <

A P PA
T

2 2
0+ <

A P PA
T

3 3
0+ <

with data

A A A1
1 2

1 3
2

0 8 1 5

1 3 2 7
3

1 4 0 9

0 7 2
=

−
−









 =

−
−









 =

−
−

,
. .

. .
,

. .

. .
  

00











This problem arises when studying the quadratic stability of the polytope of matrices
Co{A1, A2, A3}.

To assess feasibility with feasp, first enter the LMIs Equation 2-4 -Equation 2-6:

setlmis([]) 

p = lmivar(1,[2 1])
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lmiterm([1 1 1 p],1,a1,'s')     % LMI #1 

lmiterm([2 1 1 p],1,a2,'s')     % LMI #2 

lmiterm([3 1 1 p],1,a3,'s')     % LMI #3 

lmiterm([-4 1 1 p],1,1)         % LMI #4: P 

lmiterm([4 1 1 0],1)            % LMI #4: I 

lmis = getlmis

Then call feasp to find a feasible decision vector:

[tmin,xfeas] = feasp(lmis)

This returns tmin = -3.1363. Hence Equation 2-4 - Equation 2-6 is feasible and the
dynamical system &x  = A(t)x is quadratically stable for A(t) ∊ Co{A1, A2, A3}.

To obtain a Lyapunov matrix P proving the quadratic stability, type

P = dec2mat(lmis,xfeas,p)

This returns

P =










270 8 126 4

126 4 155 1

. .

. .

It is possible to add further constraints on this feasibility problem. For instance, you can
bound the Frobenius norm of P by 10 while asking tmin to be less than or equal to –1.
This is done by

[tmin,xfeas] = feasp(lmis,[0,0,10,0,0],-1)

The third entry 10 of options sets the feasibility radius to 10 while the third argument
-1 sets the target value for tmin. This yields tmin = -1.1745 and a matrix P with
largest eigenvalue λmax(P) = 9.6912.

References

The feasibility solver feasp is based on Nesterov and Nemirovski's Projective Method
described in:

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.
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Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix
Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, p. 840–844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also
mincx | gevp | dec2mat
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fitfrd
Fit frequency response data with state-space model

Syntax
B = fitfrd(A,N)

B = fitfrd(A,N,RD)

B = fitfrd(A,N,RD,WT)

Description

B = fitfrd(A,N) is a state-space object with state dimension N, where A is an frd
object and N is a nonnegative integer. The frequency response of B closely matches the D-
scale frequency response data in A.

A must have either 1 row or 1 column, although it need not be 1-by-1. B will be the same
size as A. In all cases, N should be a nonnegative scalar.

B = fitfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a nonnegative
integer. The default value for RD is 0. If A is a row (or column) then RD can be a vector of
the same size as well, specifying the relative degree of each entry of B. If RD is a scalar,
then it specifies the relative degree for all entries of B. You can specify the default value
for RD by setting RD to an empty matrix.

B = fitfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit
criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all
entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and
each individual entry of WT acts as a weighting function on the corresponding entry of (A-
B).

Examples

Fit D-scale Data

Use the fitfrd command to fit D-scale data.
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Create D-scale frequency response data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);

sys = sys*tf([1 3.75 3.5],[1 2.5 13]);

omeg = logspace(-1,1);

sysg = frd(sys,omeg);

bode(sysg,'r-');

You can try to fit the frequency response D-scale data sysg with a first-order system, b1.
Similarly, you can fit the D-scale data with a third-order system, b3.

b1 = fitfrd(sysg,1);

b3 = fitfrd(sysg,3);
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Compare the original D-scale data sysg with the frequency responses of the first and
third-order models calculated by fitfrd.

b1g = frd(b1,omeg);

b3g = frd(b3,omeg);

bode(sysg,'r-',b1g,'k:',b3g,'b-.')

legend('5th order system','1st order fit','3rd order fit','Location','Southwest')

Limitations

Numerical conditioning problems arise if the state order of the fit N is selected to be
higher than required by the dynamics of A.
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See Also
fitmagfrd
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fitmagfrd

Fit frequency response magnitude data with minimum-phase state-space model using
log-Chebyshev magnitude design

Syntax

B = fitmagfrd(A,N)

B = fitmagfrd(A,N,RD)

B = fitmagfrd(A,N,RD,WT)

B = fitmagfrd(A,N,RD,WT,C)

Description

B = fitmagfrd(A,N) is a stable, minimum-phase ss object, with state-dimension N,
whose frequency response magnitude closely matches the magnitude data in A. A is a 1-
by-1 frd object, and N is a nonnegative integer.

B = fitmagfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a
nonnegative integer whose default value is 0. You can specify the default value for RD by
setting RD to an empty matrix.

B = fitmagfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit
criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all
entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and
each individual entry of WT acts as a weighting function on the corresponding entry of (A-
B). The default value for WT is 1, and you can specify it by setting WT to an empty matrix.

B = fitmagfrd(A,N,RD,WT,C) enforces additional magnitude constraints on B,
specified by the values of C.LowerBound and C.UpperBound. These can be empty,
double or frd (with C.Frequency equal to A.Frequency). If C.LowerBound is non-
empty, then the magnitude of B is constrained to lie above C.LowerBound. No lower
bound is enforced at frequencies where C.LowerBound is equal to -inf. Similarly, the
UpperBound field can be used to specify an upper bound on the magnitude of B. If C is a
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double or frd (with C.Frequency equal to A.Frequency), then the upper and lower
bound constraints on B are taken directly from A as:

• if C(w) == –1, then enforce abs(B(w)) <= abs(A(w))
• if C(w) == 1, then enforce abs(B(w)) >= abs(A(w))
• if C(w) == 0, then no additional constraint

where w denotes the frequency.

Examples

Fit Frequency Response Data With Stable Minimum-Phase State-Space Model

Create frequency response magnitude data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);

sys = sys*tf([1 3.75 3.5],[1 2.5 13]);

omega = logspace(-1,1);

sysg = abs(frd(sys,omega));

bodemag(sysg,'r');
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Fit the magnitude data with a minimum-phase, stable third-order system.

ord = 3;

b1 = fitmagfrd(sysg,ord);

b1g = frd(b1,omega);

bodemag(sysg,'r',b1g,'k:');

legend('Data','3rd order fit');
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Fit the magnitude data with a third-order system constrained to lie below and above the
given data.

C2.UpperBound = sysg;

C2.LowerBound = [];

b2 = fitmagfrd(sysg,ord,[],[],C2);

b2g = frd(b2,omega);

C3.UpperBound = [];

C3.LowerBound = sysg;

b3 = fitmagfrd(sysg,ord,[],[],C3);

b3g = frd(b3,omega);

bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--')

legend('Data','3rd order fit','3rd order fit, below data',...

       '3rd order fit, above data')



2 Alphabetical List

2-90

Fit the magnitude data with a second-order system constrained to lie below and above
the given data.

ord = 2;

C2.UpperBound = sysg;

C2.LowerBound = [];

b2 = fitmagfrd(sysg,ord,[],sysg,C2);

b2g = frd(b2,omega);

C3.UpperBound = [];

C3.LowerBound = sysg;

b3 = fitmagfrd(sysg,ord,[],sysg,C3);

b3g = frd(b3,omega);

bgp = fitfrd(genphase(sysg),ord);

bgpg = frd(bgp,omega);
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bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--',bgpg,'r--')

legend('Data','3rd order fit','2d order fit, below data',...

       '2nd order fit, above data','bgpg')

Limitations

This input frd object must be either a scalar 1-by-1 object or, a row, or column vector.
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More About

Algorithms

fitmagfrd uses a version of log-Chebyshev magnitude design, solving

   min f     subject to (at every frequency point in A):  

           |d|^2 /(1+ f/WT) < |n|^2/A^2 < |d|^2*(1 + f/WT) 

plus additional constraints imposed with C. n, d denote the numerator and
denominator, respectively, and B = n/d. n and d have orders (N-RD) and N, respectively.
The problem is solved using linear programming for fixed f and bisection to minimize f.
An alternate approximate method, which cannot enforce the constraints defined by C, is B
= fitfrd(genphase(A),N,RD,WT).

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New
Jersey, 1975, p. 513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

See Also
fitfrd
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gainsurf

Create tunable gain surface for gain scheduling

gainsurf lets you express gain in terms of tunable parameters for tuning gain-
scheduled controllers.

In gain-scheduled controllers, each controller gain, K(σ), is a function of the scheduling
variables, σ. For tuning purposes, it is convenient to parameterize K(σ) as a smooth gain
surface of the form:

K K K F K F
M M

s s s( ) = + ( ) + + ( )0 1 1
… .

F1(σ),...,FM(σ) are user-selected basis functions. K0,...,KM are the coefficients to be tuned.
You can use terms in a generic polynomial expansion as basis functions. Or, when
you have a priori knowledge of the expected shape of K(σ), you can use more specific
functions. You can then use systune, to tune the coefficients K0,...,KM, subject to your
design requirements.

Syntax

K = gainsurf(name,K0init,F1,...,FM)

Description

K = gainsurf(name,K0init,F1,...,FM) constructs a tunable model of the gain
surface K K K F K F

M M
s s s( ) = + ( ) + + ( )0 1 1

… , sampled at a discrete set of σ values
(the design points). The arrays F1,...,FM contain the values of the basis functions
F1(σ),...,FM(σ) at those design points. The gain surface model, K, depends on the tunable
coefficients K0,...,KM. You can combine K with other static or dynamic elements to
construct a closed-loop model of your gain-scheduled control system. Then, use systune
to tune K0,...,KM so that the closed-loop system meets your design requirements at the
selected design points.
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Examples

Tunable Gain With One Scheduling Variable

Create a scalar gain K that varies as a quadratic function of a single scheduling variable,
t:

This gain surface can represent a gain that varies with time. The coefficients , , and
 are the tunable parameters of this time-varying gain.

To represent the tunable gain surface K(t) in MATLAB®, first choose a vector of t values
in the range of interest for your problem. Then, obtain the values of each basis function
in the expansion of K(t), at those t values. For this example, suppose that t varies from 0
to 40.

t = 0:5:40;

F1 = t;

F2 = t.^2;

Create a tunable model of the gain surface K(t), sampled at the t values.

K = gainsurf('K',1,F1,F2)

K =

  1x9 array of generalized matrices with 1 rows, 1 columns, and the following blocks:

    K_0: Scalar parameter, 1 occurrences.

    K_1: Scalar parameter, 1 occurrences.

    K_2: Scalar parameter, 1 occurrences.

Type "double(K)" to see the current value, "get(K)" to see all properties, and "K.Blocks" to interact with the blocks.

K is an array of generalized matrices. Each element in K describes K(t) for a particular
value of t, and depends on the tunable coefficients K_0, K_1, and K_2. For example, the
first element, K(:,:,1), is . The second element,
K(:,:,2), is , and so on.
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Associate the independent variable values with the corresponding values of K.

K.SamplingGrid = struct('time',t);

The SamplingGrid property keeps track of the scheduling variable values associated
with each entry in K. This association is convenient for tracing results back to
independent variable values. For instance, you can use view(K) to inspect the tuned
values of the gain surface after tuning. When you do so, view takes the axis range and
labels from the entries in SamplingGrid. For this example, instead of tuning, manually
set the values of the tunable blocks to non-zero values. View the resulting gain as a
function of time.

values = struct('K_0',1,'K_1',-1,'K_2',0.1);

view(setBlockValue(K,values))
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You can use K as a tunable gain to design a gain-scheduled controller. Use systune to
tune the coefficients , , and  at the sample times t = 0,5,...,40.

Tunable Gain With Two Independent Scheduling Variables

This example shows how to model a scalar gain K with a bilinear dependence on two
scheduling variables,  and V, as follows:

For this example,  is an angle of incidence that ranges from 0 to 15 degrees, and V
is a speed that ranges from 300 to 600 m/s. The coefficients  are the tunable
parameters of this variable gain.

Create a grid of design points, , that are linearly spaced in  and V. These design
points are where you will tune the gain surface coefficients.

[alpha,V] = ndgrid(0:5:15,300:100:600);

These arrays, alpha and V, represent the independent variation of the two scheduling
variables, each across its full range.

When you tune the gain surface coefficients with systune, you might obtain better
solver performance by normalizing the scheduling variables to fall within the interval
[-1,1]. Scale the  and V grid to fall within this range.

alphaN = alpha/15;

VN = (V-450)/150;

Create the tunable gain surface sampled at the grid of  values:

In this expansion, the basis functions are:
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Specify the values of the basis functions over the .

F1 = alphaN;

F2 = VN;

F3 = alphaN.*VN;

K = gainsurf('K',1,F1,F2,F3)

K =

  4x4 array of generalized matrices with 1 rows, 1 columns, and the following blocks:

    K_0: Scalar parameter, 1 occurrences.

    K_1: Scalar parameter, 1 occurrences.

    K_2: Scalar parameter, 1 occurrences.

    K_3: Scalar parameter, 1 occurrences.

Type "double(K)" to see the current value, "get(K)" to see all properties, and "K.Blocks" to interact with the blocks.

K is an array of generalized matrices. Each element in K corresponds to  for a
particular  pair, and depends on the tunable coefficients K_0,...,|K_3|.

Associate the independent variable values with the corresponding values of K.

K.SamplingGrid = struct('alpha',alpha,'V',V);

The SamplingGrid property keeps track of the scheduling variable values associated
with each entry in K. This association is convenient for tracing results back to
independent variable values. For instance, you can use view(K) to inspect the tuned
values of the gain surface after tuning. When you do so, view takes the axis range and
labels from the entries in SamplingGrid. For this example, instead of tuning, manually
set the values of the tunable blocks to non-zero values. View the resulting gain surface as
a function of the scheduling variables.

values = struct('K_0',1,'K_1',-1,'K_2',0.1,'K_3',-0.2);

Ktuned = setBlockValue(K,values);

view(Ktuned)
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The variable names and values that you specified in the SamplingGrid property are
used to scale and label the axes.

You can use K as a tunable gain to build a control system with gain-scheduled tunable
components. For example, use K to create a gain-scheduled low-pass filter.

F = tf(K,[1 K]);

You can use gain surfaces as arguments to model creation commands like tf the same
way you would use numeric arguments. The resulting filter is a generalized state-space
(genss) model array that depends on the four coefficients of the gain surface.

Use model interconnection commands (such as connect and feedback) to combine
F with an array of plant models sampled at the same values of  and V. You can then



 gainsurf

2-99

use systune to tune the gain-scheduled controller to meet your design requirements.
Because you normalized the scheduling variables to model the tunable gain, you must
adjust the coefficient values in the implementation of your tuned controller.

Gain Surface Over Nonregular Grid

Create a gain surface sampled at scheduling variable values that do not form a regular
grid in the operating domain. The gain surface varies as a bilinear function of variables 
and :

Suppose that the values of interest of the scheduling variables are the following 
pairs.

Specify the  sample values as vectors.

alpha = [-0.9;-1.5;-1.5;-2.5;-3.2;-3.9];

beta = [0.05;0.6;0.95;0.5;0.7;0.3];

Instead of a regular grid of  values, here the gain surface is sampled at irregularly
spaced points on -space.

plot(alpha,beta,'o')
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The basis functions of the expansion of  are:

•
•

•

Evaluate the basis functions at each of the sample points.

F1 = alpha;

F2 = beta;

F3 = alpha.*beta;

Create the tunable model of the gain surface using these sampled function values.
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K = gainsurf('K',1,F1,F2,F3)

K =

  6x1 array of generalized matrices with 1 rows, 1 columns, and the following blocks:

    K_0: Scalar parameter, 1 occurrences.

    K_1: Scalar parameter, 1 occurrences.

    K_2: Scalar parameter, 1 occurrences.

    K_3: Scalar parameter, 1 occurrences.

Type "double(K)" to see the current value, "get(K)" to see all properties, and "K.Blocks" to interact with the blocks.

The gain surface is represented by a 6-by-1 array of generalized matrices. Because K is
a scalar gain, each element in the array is 1-by-1. Each element in the array represents

 for the corresponding  sample. Each of these elements depends on the
tunable parameters K_0,...,K_3.

Use the SamplingGrid property to associate the  and  values with the corresponding
entries in K.

SG = struct('alpha',alpha,'beta',beta);

K.SamplingGrid = SG;

• “Gain-Scheduled PID Controller”
• “Tuning of Gain-Scheduled Three-Loop Autopilot”
• Gain Scheduled Control Of a Chemical Reactor

Input Arguments
name — Identifying label for the tunable gain
string

Identifying label for the tunable gain surface, specified as a string. The tunable
coefficients of the gain surface are assigned names based on this identifying label. For
example, suppose you create a gain surface using the name Kp. The tunable coefficients
are realp blocks in the resulting genmat. These blocks have names Kp_0, Kp_1,...,Kp_M.

Additionally, you can use this label to refer to the gain surface. For example, you can
extract tuned coefficient values from a control system model, M, that depends on the gain
surface using [K0,K1,...,KM] = gainsurfdata(M,'Kname').

../examples/gain-scheduled-control-of-a-chemical-reactor.html
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K0init — Initial value of K0

scalar | array

Initial value of the tunable coefficient K0, specified as a scalar or an array. The
dimensions of K0init determine the I/O dimensions of the gain surface. For example,
if the gain surface represents a two-input, two-output gain, you can set K0init =
zeros(2). Doing so automatically sets the I/O dimensions of the other terms in the gain
surface.

K(σ)

K011
K012

K1

K2

K3

K0

K021
K022

F1,...,FM — Values of the basis functions at sample values of scheduling variables
numeric arrays

Function values describing the dependence of the gain surface on the scheduling
variables, specified as numeric arrays. Each Fj(σ) in the expansion of the gain surface
is a scalar-valued function. The corresponding input argument, Fj, is a numeric array
containing the values of Fj(σ) at the corresponding scheduling variable values. For
instance, in the following illustration, Fj(σ) is a function of two scheduling variables. The
corresponding matrix FJ contains the values of Fj(σ) sampled over a 2-D grid of (σ1,σ2)
values.
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Fj (σ) FJ

Fj

σ1

σ2

σ1

σ2

((

To construct the arguments F1,...,FM when your sampling grid is regular, evaluate
each Fj(σ) over that grid. For example, consider a gain that depends on two scheduling
variables, α and β:

K K K K Ka b ab a b, .( ) = + + +0 1 2 3

For this gain, F1 = αβ, F2 = α, and F3 = β. To create the input argument F1, you first
create a grid of α and β values that spans the operating range of these variables. Then,
you compute the values of F1 over that grid.

[alpha,beta] = ndgrid(0:1:10,50:5:100);

F1 = alpha.*beta;

You can improve performance of the tuning algorithm by specifying the function values
in terms of normalized scheduling variables that fall in the range [–1,1]. To do this,
subtract the mean value from each variable grid and divide by the variable’s half-range.
For example:

alphaN = (alpha-5)/5;

betaN = (beta-75)/25;

F1 = alphaN.*betaN;

In this example the values of α and β are regularly spaced. However, regular grid spacing
is not required. Suppose your sampling values are arbitrary (α,β) pairs. In this case, α
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and β are specified as vectors, where (α(i),β(i) represents one sample point. Each Fj is also
a vector:

F F F Fj j j j N N= ( ) ( ) ( )ÈÎ ˘̊a b a b a b1 1 2 2, , , , , , .…

For an example, see “Gain Surface Over Nonregular Grid” on page 2-99.

Output Arguments

K — Tunable gain surface
generalized matrix

Tunable gain surface, returned as an array of generalized matrices (genmat).

The dimensions of each generalized matrix in the array (the I/O dimensions of the gain
surface) are determined by the dimensions of K0init. The dimensions of the array itself
are determined by the sampling grid used to specify the basis functions. Thus, each entry
in the array represents the gain at the corresponding scheduling variable value.

The gain surface depends on the tunable coefficients K0,...,KM. Each coefficient is
modeled as a realp block of the same size as K. For instance, if the gain surface models a
scalar gain, then each coefficient is a scalar realp block. If the gain surface models a 2-
by-3 gain matrix, then each coefficient is a 2-by-3 realp block.

More About
• “Gain-Scheduled Control Systems”
• “Parametric Gain Surfaces”

See Also

Functions
gainsurfdata | genmat | ndgrid | systune | view (genmat)
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gainsurfdata
Get values of gain surface coefficients

Syntax

[K0,K1,...,KM] = gainsurfdata(K)

[K0,K1,...,KM] = gainsurfdata(M,Kname)

Description

[K0,K1,...,KM] = gainsurfdata(K) returns the current values of the coefficients of
a gain surface, K. K is of the form:

K K K F K F
M M

s s s( ) = + ( ) + + ( )0 1 1
… .

Typically, you create K using gainsurf.

[K0,K1,...,KM] = gainsurfdata(M,Kname) returns the coefficients of a gain
surface having name Kname that is incorporated into a control system model, M. You can
use this syntax to extract tuned coefficient values after using systune to tune M.

Examples

Get Current Values of Gain Surface Coefficients

Extract the current coefficient values from a tunable gain surface
.

For this example, create a tunable gain surface and extract the initial values of its
coefficients. Generally, gainsurfdata is useful for extracting tuned coefficient values
after control system tuning with systune.

Create the tunable gain surface.

alpha = 0:10:100;
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F1 = alpha;

F2 = alpha.^2;

K = gainsurf('K',1,F1,F2)

K =

  1x11 array of generalized matrices with 1 rows, 1 columns, and the following blocks:

    K_0: Scalar parameter, 1 occurrences.

    K_1: Scalar parameter, 1 occurrences.

    K_2: Scalar parameter, 1 occurrences.

Type "double(K)" to see the current value, "get(K)" to see all properties, and "K.Blocks" to interact with the blocks.

K is a generalized matrix (genmat) with tunable coefficients K_0, K_1, K_2.

Extract the current values of the tunable coefficients.

[K0,K1,K2] = gainsurfdata(K)

K0 =

     1

K1 =

     0

K2 =

     0

You specify the initial value of K_0 with the K0init input argument to gainsurf. The
output of gainsurfdata shows that gainsurf automatically assigns initial values of 0
to the remaining coefficients.

Get Coefficient Values from Control System Model

Extract current coefficient values from a generalized model of a control system that
depends on a tunable gain surface.
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For this example, create a control system model and extract the initial values of its
coefficients. Generally, gainsurfdata is useful for extracting tuned coefficient values
after control system tuning with systune.

Create an array of plant models in which each plant is sampled at a different value of a
scheduling parameter, alpha.

alpha = (0:10:100)';

G = zpk(zeros(1,1,11));

for ii = 1:11

 G(:,:,ii) = zpk([],-1+0.01*alpha(ii),1);

end

Create a tunable PI controller with gains that depend the same scheduling parameter.

F1 = alpha;

F2 = alpha.^2;

Kp = gainsurf('Kp',1,F1,F2);

Ki = gainsurf('Ki',0.1,F1,F2);

C = pid(Kp,Ki);

Combine the plant model with the tunable controller to build a closed-loop control system
model array.

M = feedback(G*C,1)

M =

  11x1 array of generalized continuous-time state-space models.

  Each model has 1 outputs, 1 inputs, 2 states, and the following blocks:

    Ki_0: Scalar parameter, 1 occurrences.

    Ki_1: Scalar parameter, 1 occurrences.

    Ki_2: Scalar parameter, 1 occurrences.

    Kp_0: Scalar parameter, 1 occurrences.

    Kp_1: Scalar parameter, 1 occurrences.

    Kp_2: Scalar parameter, 1 occurrences.

Type "ss(M)" to see the current value, "get(M)" to see all properties, and "M.Blocks" to interact with the blocks.

This array of tunable closed-loop models, M, depends on the coefficients that parametrize
the PI gains in terms of the scheduling variable, alpha.

Extract the initial values of the tunable coefficients.
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[Kp0,Kp1,Kp2] = gainsurfdata(M,'Kp');

[Ki0,Ki1,Ki2] = gainsurfdata(M,'Ki');

M depends on the gain surfaces that are assigned the names Kp and Ki. Therefore,
gainsurfdata finds and returns the initial values of the coefficients associated with
those gain surfaces.

Similarly, use gainsurfdata to extract the tuned values of the coefficients after using
systune to tune M against a set of design requirements.

• “Tuning of Gain-Scheduled Three-Loop Autopilot”

Input Arguments

K — Gain surface
gain surface (genmat array created with gainsurf)

Gain surface from which to extract coefficients, specified as a generalized matrix
(genmat) array created using gainsurf.

M — Control system model
generalized state-space model (genss) | genss model array

Control system model from which to extract tunable coefficients, specified as a genss
model or array of genss models. M must depend on a gain surface that has the name
Kname. Typically, you create that gain surface using gainsurf, incorporate it into M,
and tune the coefficients with systune. Then you can use gainsurfdata(M,Kname) to
extract the tuned values of the coefficients associated with that gain surface.

Kname — Name of gain surface
string

Name of a gain surface that the control system model M depends on, specified as a
string. The value of this string is the Name property of a genmat that represents a gain
surface. For example, suppose you create a tunable gain surface, Kc, and combine it with
a numeric LTI model array, sysarr:

K = gainsurf('Kc',1,F1,F2,F3);

M = feedback(sysarr*K,1);

M is an array of tunable control system models that depend on the gain surface. The
following code extracts the values of the coefficients associated with this gain surface.



 gainsurfdata

2-109

[Kc0,Kc1,Kc2,Kc3] = gainsurfdata(M,'Kc');

Output Arguments

K0,K1,...,KM — Current values of tunable coefficients
numeric scalar | numeric array

Current values of the tunable coefficients of the gain surface, returned as numeric
values. The gain surface K or Kname has the form:

K K K F K F
M M

s s s( ) = + ( ) + + ( )0 1 1
… .

• If the gain surface represents a scalar gain, then the current values are scalars.
• If the gain surface represents a MIMO gain, then the current values are arrays of the

same dimensions as the I/O dimensions of the gain surface.

More About
• “Gain-Scheduled Control Systems”
• “Parametric Gain Surfaces”

See Also

Functions
gainsurf | genmat | genss | systune
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gapmetric

Compute upper bounds on Vinnicombe gap and nugap distances between two systems

Syntax

[gap,nugap] = gapmetric(p0,p1)

[gap,nugap] = gapmetric(p0,p1,tol)

Description

[gap,nugap] = gapmetric(p0,p1) calculates upper bounds on the gap and nugap
(Vinnicombe) metric between systems p0 and p1. The gap and nugap values lie between
0 and 1. A small value (relative to 1) implies that any controller that stabilizes p0 will
likely stabilize p1, and, moreover, that the closed-loop gains of the two closed-loop
systems will be similar. A gap or nugap of 0 implies that p0 equals p1, and a value of
1 implies that the plants are far apart. The input and output dimensions of p0 and p1
must be the same.

[gap,nugap] = gapmetric(p0,p1,tol) specifies a relative accuracy for calculating
the gap metric and nugap metric. The default value for tol is 0.001. The computed
answers are guaranteed to satisfy

gap-tol < gapexact(p0,p1) <=  gap 

Examples

Compute gap and nugap Metrics for Stable and Unstable Plant Models

Create two plant models. One plant is unstable, first-order, with transfer function 1/( s
-0.001). The other plant is stable and first-order with transfer function 1/( s +0.001).

p1 = tf(1,[1 -0.001]);

p2 = tf(1,[1 0.001]);
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Despite the fact that one plant is unstable and the other is stable, these plants are close
in the gap and nugap metrics.

[g,ng] = gapmetric(p1,p2)

g =

    0.0029

ng =

    0.0020

Intuitively, this result is obvious, because, for instance, the feedback controller K = 1
stabilizes both plants and renders the closed-loop systems nearly identical.

K = 1;

H1 = loopsens(p1,K);

H2 = loopsens(p2,K);

subplot(2,2,1); bode(H1.Si,'-',H2.Si,'--');

subplot(2,2,2); bode(H1.Ti,'-',H2.Ti,'--');

subplot(2,2,3); bode(H1.PSi,'-',H2.PSi,'--');

subplot(2,2,4); bode(H1.CSo,'-',H2.CSo,'--');
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Next, consider two stable plant models that differ by a first-order system. One plant is
the transfer function 50/( s +50) and the other plant is the transfer function 50/( s +50) *
8/( s +8).

p3 = tf([50],[1 50]);

p4 = tf([8],[1 8])*p3;

Although the two systems have similar high-frequency dynamics and the same unity
gain at low frequency, the plants are modestly far apart in the gap and nugap metrics.

[g,ng] = gapmetric(p3,p4)

g =
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    0.6156

ng =

    0.6147

More About

Algorithms

gap and nugap compute the gap and ν gap metrics between two LTI objects. Both
quantities give a numerical value δ(p0,p1) between 0 and 1 for the distance between a
nominal system p0 (G0) and a perturbed system p1 (G1). The gap metric was introduced
into the control literature by Zames and El-Sakkary 1980, and exploited by Georgiou
and Smith 1990. The ν gap metric was derived by Vinnicombe 1993. For both of these
metrics the following robust performance result holds from Qui and Davidson 1992, and
Vinnicombe 1993

arcsin b(G1,K1) ≥ arcsin b(G0,K0) – arcsin δ(G0,G1) – arcsin δ(K0,K1)

where

b G K
I

K
I GK G I( , ) ( )=









 − [ ]−

∞

−
1

1

The interpretation of this result is that if a nominal plant G0 is stabilized by controller
K0, with “stability margin” b(G0,K0), then the stability margin when G0 is perturbed to
G1 and K0 is perturbed to K1 is degraded by no more than the above formula. Note that
1/b(G,K) is also the signal gain from disturbances on the plant input and output to the
input and output of the controller. The ν gap is always less than or equal to the gap, so
its predictions using the above robustness result are tighter.

To make use of the gap metrics in robust design, weighting functions need to be
introduced. In the above robustness result, G needs to be replaced by W2GW1 and K

by W KW
1

1

2

1− − (similarly for G0, G1, K0 and K1). This makes the weighting functions
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compatible with the weighting structure in the H∞ loop shaping control design procedure
(see loopsyn and ncfsyn for more details).

The computation of the gap amounts to solving 2-block H∞ problems (Georgiou, Smith
1988). The particular method used here for solving the H∞ problems is based on Green et
al., 1990. The computation of the nugap uses the method of Vinnicombe, 1993.

References

Georgiou, T.T., “On the computation of the gap metric, ” Systems Control Letters, Vol. 11,
1988, p. 253-257

Georgiou, T.T., and M. Smith, “Optimal robustness in the gap metric,” IEEE
Transactions on Automatic Control, Vol. 35, 1990, p. 673-686

Green, M., K. Glover, D. Limebeer, and J.C. Doyle, “A J-spectral factorization approach
to H∞ control,” SIAM J. of Control and Opt., 28(6), 1990, p. 1350-1371

Qiu, L., and E.J. Davison, “Feedback stability under simultaneous gap metric
uncertainties in plant and controller,” Systems Control Letters, Vol. 18-1, 1992 p. 9-22

Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD Dissertation,
Department of Engineering, University of Cambridge, 1993.

Zames, G., and El-Sakkary, “Unstable systems and feedback: The gap metric,”
Proceedings of the Allerton Conference, October 1980, p. 380-385

See Also
loopsyn | wcsens | ncfsyn | robuststab | wcmargin
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genphase
Fit single-input/single-output magnitude data with real, rational, minimum-phase
transfer function

Syntax
resp = genphase(d)

Description

genphase uses the complex-cepstrum algorithm to generate a complex frequency
response resp whose magnitude is equal to the real, positive response d, but whose
phase corresponds to a stable, minimum-phase function. The input, d, and output, resp,
are frd objects.

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New
Jersey, 1975, p. 513.

See Also
fitfrd | fitmagfrd
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getlmis
Internal description of LMI system

Syntax

lmisys = getlmis

Description

After completing the description of a given LMI system with lmivar and lmiterm, its
internal representation lmisys is obtained with the command

lmisys = getlmis

This MATLAB representation of the LMI system can be forwarded to the LMI solvers or
any other LMI-Lab function for subsequent processing.

See Also
setlmis | newlmi | lmivar | lmiterm
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gevp
Generalized eigenvalue minimization under LMI constraints

Syntax
[lopt,xopt] = gevp(lmisys,nlfc,options,linit,xinit,target)

Description

gevp solves the generalized eigenvalue minimization problem of minimizing λ, subject to:

C x D x( ) ( )<

0 < B x( )

A x B x( ) ( )< λ

where C(x) < D(x) and A(x) < λB(x) denote systems of LMIs. Provided that Equation 2-7
and Equation 2-8 are jointly feasible, gevp returns the global minimum lopt and the
minimizing value xopt of the vector of decision variables x. The corresponding optimal
values of the matrix variables are obtained with dec2mat.

The argument lmisys describes the system of LMIs Equation 2-7 to Equation 2-9
for λ = 1. The LMIs involving λ are called the linear-fractional constraints while
Equation 2-7 and Equation 2-8 are regular LMI constraints. The number of linear-
fractional constraints Equation 2-9 is specified by nlfc. All other input arguments are
optional. If an initial feasible pair (λ0, x0) is available, it can be passed to gevp by setting
linit to λ0 and xinit to x0. Note that xinit should be of length decnbr(lmisys) (the
number of decision variables). The initial point is ignored when infeasible. Finally, the
last argument target sets some target value for λ. The code terminates as soon as it has
found a feasible pair (λ, x) with λ ≤ target.

Caution

When setting up your gevp problem, be cautious to
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• Always specify the linear-fractional constraints Equation 2-9 last in the LMI system.
gevp systematically assumes that the last nlfc LMI constraints are linear fractional.

• Add the constraint B(x) > 0 or any other LMI constraint that enforces it (see Remark
below). This positivity constraint is required for regularity and good formulation of
the optimization problem.

Control Parameters

The optional argument options lets you access control parameters of the optimization
code. In gevp, this is a five-entry vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value lopt (default =
10–2).

• options(2) sets the maximum number of iterations allowed to be performed by the
optimization procedure (100 by default).

• options(3) sets the feasibility radius. Its purpose and usage are the same as for
feasp.

• options(4) helps speed up termination. If set to an integer value J > 0, the code
terminates when the progress in λ over the last J iterations falls below the desired
relative accuracy. Progress means the amount by which λ decreases. The default
value is 5 iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure.
Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter
to its default value.

Examples
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consider the problem of finding a single Lyapunov function V(x) = xTPx that proves
stability of
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&x A x ii= = ( , , )1 2 3

and maximizes the decay rate dV x

dt

( ) . This is equivalent to minimizing

α subject to

I P<

A P PA P
T

1 1
+ <α

A P PA P
T

2 2
+ <α

A P PA P
T

3 3
+ <α

To set up this problem for gevp, first specify the LMIs Equation 2-11 to
Equation 2-13with α = 1:

setlmis([]); 

p = lmivar(1,[2 1])

lmiterm([1 1 1 0],1)  % P > I : I 

lmiterm([–1 1 1 p],1,1)  % P > I : P 

lmiterm([2 1 1 p],1,a1,'s')  % LFC # 1 (lhs) 

lmiterm([–2 1 1 p],1,1)  % LFC # 1 (rhs) 

lmiterm([3 1 1 p],1,a2,'s')  % LFC # 2 (lhs) 

lmiterm([–3 1 1 p],1,1)  % LFC # 2 (rhs) 

lmiterm([4 1 1 p],1,a3,'s')  % LFC # 3 (lhs) 

lmiterm([–4 1 1 p],1,1)  % LFC # 3 (rhs) 

lmis = getlmis

Note that the linear fractional constraints are defined last as required. To minimize α
subject to Equation 2-11 to Equation 2-13, call gevp by

[alpha,popt]=gevp(lmis,3)

This returns alpha = -0.122 as the optimal value (the largest decay rate is therefore
0.122). This value is achieved for:



2 Alphabetical List

2-120

P =
−

−










5 58 8 35

8 35 18 64

. .

. .

More About

Tips

Generalized eigenvalue minimization problems involve standard LMI constraints
Equation 2-7 and linear fractional constraints Equation 2-9. For well-posedness, the
positive definiteness of B(x) must be enforced by adding the constraint B(x) > 0 to the
problem. Although this could be done automatically from inside the code, this is not
desirable for efficiency reasons. For instance, the set of constraints Equation 2-8 may
reduce to a single constraint as in the example above. In this case, the single extra LMI
“P > I ” is enough to enforce positivity of all linear-fractional right sides. It is therefore
left to the user to devise the least costly way of enforcing this positivity requirement.

References

The solver gevp is based on Nesterov and Nemirovski's Projective Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the C MEX-file fpds.mex.

See Also
dec2mat | decnbr | feasp | mincx
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gridureal

Grid ureal parameters uniformly over their range

Syntax

B = gridureal(A,N)

[B,SampleValues] = gridureal(A,N)

[B,SampleValues] = gridureal(A,NAMES,N)

[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...)

Description

B = gridureal(A,N) substitutes N uniformly-spaced samples of the uncertain real
parameters in A. The samples are chosen to cut “diagonally” across the cube of real
parameter uncertainty space. The array B has size equal to [size(A) N]. For example,
suppose A has 3 uncertain real parameters, say X, Y and Z. Let (x1, x2 , , and xN)
denote N uniform samples of X across its range. Similar for Y and Z. Then sample A at the
points (x1, y1, z1), (x2, y2, z2), and (xN, yN, zN) to obtain the result B.

If A depends on additional uncertain objects, then B will be an uncertain object.

[B,SampleValues] = gridureal(A,N) additionally returns the specific sampled
values (as a structure whose fieldnames are the names of A's uncertain elements) of
the uncertain reals. Hence, B is the same as usubs(A,SampleValues).

[B,SampleValues] = gridureal(A,NAMES,N) samples only the uncertain
reals listed in the NAMES variable (cell, or char array). Any entries of NAMES
that are not elements of A are simply ignored. Note that gridureal(A,
fieldnames(A.Uncertainty),N) is the same as gridureal(A,N).

[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...) takes N1
samples of the uncertain real parameters listed in NAMES1, and N2 samples of the
uncertain real parameters listed in NAMES2 and so on. size(B) will equal [size(A) N1
N2 ...].
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Examples

Grid Open-Loop and Closed-Loop Responses of Uncertain System

Create two uncertain real parameters gamma and tau. The nominal value of gamma is 4
and its range is 3 to 5. The nominal value of tau is 0.5 and its value can vary by +/- 30
percent.

gamma = ureal('gamma',4);

tau = ureal('tau',.5,'Percentage',30);

These uncertain parameters are used to construct an uncertain transfer function p. An
integral controller, c, is synthesized for the plant p based on the nominal values of gamma
and tau. The uncertain closed-loop system clp is formed.

p = tf(gamma,[tau 1]);

KI = 1/(2*tau.Nominal*gamma.Nominal);

c = tf(KI,[1 0]);

clp = feedback(p*c,1);

The figure below shows the open-loop unit step response (top plot) and closed-loop
response (bottom plot) for a grid of 20 values of gamma and tau.

subplot(2,1,1); step(gridureal(p,20),6)

title('Open-loop plant step responses')

subplot(2,1,2); step(gridureal(clp,20),6)
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The plot illustrates the low-frequency closed-loop insensitivity achieved by the PI control
system.

Grid Over Multi-Dimensional Parameter Spaces

This example illustrates the different options in gridding high-dimensional (e.g., n
greater than 2) parameter spaces.

Construct an uncertain matrix, m, from four uncertain real parameters, a, b, c, and d,
each making up the individual entries in m.

a = ureal('a',1);

b = ureal('b',2);
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c = ureal('c',3);

d = ureal('d',4);

m = [a b;c d];

First, grid the (a,b) space at five places, and the (c,d) space at three places.

m1 = gridureal(m,{'a';'b'},5,{'c';'d'},3);

gridureal evaluates the uncertain matrix m at these 15 grid points, resulting in the
numerical matrix m1.

Next, grid the (a,b,c,d) space at 15 places.

m2 = gridureal(m,{'a';'b';'c';'d'},15);

gridureal samples the uncertain matrix m at these 15 points, resulting in the
numerical matrix m2.

The (2,1) entry of m is just the uncertain real parameter c. Plot the histograms of the
(2,1) entry of both m1 and m2. The (2,1) entry of m1 only takes on three distinct values,
while the (2,1) entry of m2 takes on 15 distinct values uniformly through its range.

subplot(2,1,1)

hist(squeeze(m1(2,1,:)))

title('2,1 entry of m1')

subplot(2,1,2)

hist(squeeze(m2(2,1,:)))

title('2,1 entry of m2')
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See Also
usample | usubs
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h2hinfsyn
Mixed H2/H∞ synthesis with pole placement constraints

Syntax
[gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region,dkbnd,tol)

Description

h2hinfyn performs multi-objective output-feedback synthesis. The control problem is
sketched in this figure.

If T∞(s) and T2(s) denote the closed-loop transfer functions from w to z∞ and z2,
respectively, hinfmix computes a suboptimal solution of the following synthesis
problem:

Design an LTI controller K(s) that minimizes the mixed H2/H∞ criterion

α βT T∞ ∞ +2

2 2

2

subject to

• ∥T∞∥[[BULLET]] < γ0

• ∥T2∥2 < ν0

• The closed-loop poles lie in some prescribed LMI region D.
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Recall that ∥.∥∞ and ∥.∥2 denote the H∞ norm (RMS gain) and H2 norm of transfer
functions.

P is any SS, TF, or ZPK LTI representation of the plant P(s), and r is a three-entry vector
listing the lengths of z2, y, and u. Note that z∞ and/or z2 can be empty. The four-entry
vector obj = [γ0, ν0, α, β] specifies the H2/H∞ constraints and trade-off criterion, and the
remaining input arguments are optional:

• region specifies the LMI region for pole placement (the default region = [] is the
open left-half plane). Use lmireg to interactively build the LMI region description
region

• dkbnd is a user-specified bound on the norm of the controller feedthrough matrix DK.
The default value is 100. To make the controller K(s) strictly proper, set dkbnd = 0.

• tol is the required relative accuracy on the optimal value of the trade-off criterion
(the default is 10–2).

The function h2hinfsyn returns guaranteed H∞ and H2 performances gopt and h2opt
as well as the SYSTEM matrix K of the LMI-optimal controller. You can also access the
optimal values of the LMI variables R, S via the extra output arguments R and S.

A variety of mixed and unmixed problems can be solved with hinfmix. In particular, you
can use hinfmix to perform pure pole placement by setting obj = [0 0 0 0]. Note
that both z∞ and z2 can be empty in such case.

References

Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints: An LMI
Approach,” IEEE Trans. Aut. Contr., 41 (1995), pp. 358–367.

Scherer, C., “Mixed H2/H-infinity Control,” Trends in Control: A European Perspective,
Springer-Verlag (1995), pp.173–216.

See Also
lmireg | msfsyn
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h2syn

H2 control synthesis for LTI plant

Syntax

[K,CL,GAM,INFO] = H2SYN(P,NMEAS,NCON)

Description

[K,CL,GAM,INFO] = H2SYN(P,NMEAS,NCON) computes a stabilizing H2 optimal
controller K for a partitioned LTI plant P:

P = 

 A

C
1

C
2

 B
1

D
11

D
21

 B
2

D
12

D
22

. 

The LTI system P is partitioned where inputs to B1 are the disturbances, inputs to B2 are
the control inputs, output of C1 are the errors to be kept small, and outputs of C2 are the
output measurements provided to the controller. B2 has column size (NCON) and C2 has
row size (NMEAS). The controller, K, is a state-space (ss) model and has the same number
of states as P.

If P is constructed with mktito, you can omit NMEAS and NCON from the arguments.

The closed-loop system is returned in CL and the achieved H2 cost γ in GAM. INFO is a
struct array that returns additional information about the design.
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H2 control system CL= lft(P,K)=.

Output Arguments Description

K LTI controller
CL= lft(P,K) LTI closed-loop system Ty u

1 1

GAM =

norm(CL) H2 optimal cost γ = 
Ty u1 1

2

INFO Additional output information

Additional output — structure array INFO containing possible additional information
depending on METHOD)

INFO.NORMS Norms of four different quantities, full information control cost (FI),
output estimation cost (OEF), direct feedback cost (DFL) and full
control cost (FC). NORMS = [FI OEF DFL FC];

INFO.KFI Full-information gain matrix (constant feedback)

u t K x t
FI2 ( ) ( )=

INFO.GFI Full-information closed-loop system GFI=ss(A-B2*KFI,B1,C1-
D12*KFI,D11)

INFO.HAMX X Hamiltonian matrix (state-feedback)
INFO.HAMY Y Hamiltonian matrix (Kalman filter)
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Examples

Stabilizing Controller for MIMO Plant

Stabilize a 4-by-5 unstable plant with three states, two measurement signals, and one
control signal.

In practice, P is an augmented plant that you have constructed by combining a model of
the system to control with appropriate H2 weighting functions. For this example, use a
randomly-generated model.

rng(0,'twister');

P = rss(3,4,5)';

This command creates a 4-output, 5-input stable model and then takes its Hermitian
conjugate. This operation yields a 5-output, 4-input unstable model. For this
example, assume that one of the inputs is a control signal and two of the outputs are
measurements.

Confirm that P is unstable. All the poles are in the right half-plane.

pole(P)

ans =

    0.2593

   15.9497

   20.7994

Design the stabilizing controller, assuming NMEAS = 2 and NCON = 1.

[K,CL,GAM] = h2syn(P,2,1);

Examine the closed-loop system to confirm that the plant is stabilized.

pole(CL)

ans =

  -26.8951

  -22.4817

  -20.6965
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  -17.6041

   -0.8694

   -2.6697

Mixed-Sensitivity H2 Loop Shaping

Shape the singular value plots of the sensitivity  and complementary
sensitivity .

To do so, find a stabilizing controller K that minimizes the  norm of:

Assume the following plant and weights:

Using those values, construct the augmented plant P, as illustrated in the mixsyn
reference page.

s = zpk('s');

G = 10*(s-1)/(s+1)^2;

G.u = 'u2';

G.y = 'y';

W1 = 0.1*(s+1000)/(100*s+1);

W1.u = 'y2';

W1.y = 'y11';

W2 = tf(0.1);

W2.u = 'u2';

W2.y = 'y12';

S = sumblk('y2 = u1 - y');

P = connect(G,S,W1,W2,{'u1','u2'},{'y11','y12','y2'});

Use h2syn to generate the controller. Note that this system has NMEAS = 1 and NCON
= 1.
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[K,CL,GAM] = h2syn(P,1,1);

Examine the resulting loop shape.

L = G*K;

S = inv(1+L);

T = 1-S;

sigmaplot(L,'k-.',S,'r',T,'g')

legend('open-loop','sensitivity','closed-loop')

Limitations
• (A, B2, C2) must be stabilizable and detectable.
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• D12 must have full column rank and D21 must have full row rank

More About

Algorithms

The H2 optimal control theory has its roots in the frequency domain interpretation
the cost function associated with time-domain state-space LQG control theory [1]. The
equations and corresponding nomenclature used here are taken from the Doyle et al.,
1989 [2]-[3].

h2syn solves the H2 optimal control problem by observing that it is equivalent to a
conventional Linear-Quadratic Gaussian (LQG) optimal control problem. For simplicity,
we shall describe the details of algorithm only for the continuous-time case, in which case
the cost function JLQG satisfies

J E
T
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with plant noise u1 channel of intensity I, passing through the matrix [B1;0;D12] to
produce equivalent white correlated with plant ξ and white measurement noise θ having
joint correlation function
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The H2 optimal controller K(s) is thus realizable in the usual LQG manner as a full-state
feedback KFI and a Kalman filter with residual gain matrix KFC.
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1 Kalman Filter
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where Y = YT≥0 solves the Kalman filter Riccati equation
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where X = XT≥0 solves the state-feedback Riccati equation
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The final positive-feedback H2
 optimal controller u K s y2 2= ( )  has a familiar closed-
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h2syn implements the continuous optimal H2 control design computations using
the formulae described in the Doyle, et al. [2]; for discrete-time plants, h2syn uses
the same controller formula, except that the corresponding discrete time Riccati
solutions (dare) are substituted for X and Y. A Hamiltonian is formed and solved
via a Riccati equation. In the continuous-time case, the optimal H2-norm is infinite
when the plant D11 matrix associated with the input disturbances and output errors
is non-zero; in this case, the optimal H2 controller returned by h2syn is computed by
first setting D11 to zero.

3 Optimal Cost GAM
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The full information (FI) cost is given by the equation trace ( )′( )B X B1 2 1

1

2

. The output

estimation cost (OEF) is given by trace ( )F Y F2 2 2

1

2

′( ) , where F B X D C2 2 2 12 1= − ′ + ′: ( ) .

The disturbance feedforward cost (DFL) is trace ( )′( )L X L2 2 2

1

2

, where L2 is defined

by − ′ + ′( )Y C B D2 2 1 21  and the full control cost (FC) is given by trace ( )C Y C1 2 1

1

2

′( ) .
X2 and Y2 are the solutions to the X and Y Riccati equations, respectively. For for
continuous-time plants with zero feedthrough term (D11 = 0), and for all discrete-

time plants, the optimal H2 cost γ = 
Ty u

1 1 2  is

GAM =sqrt(FI^2 + OEF^2+ trace(D11*D11'));

otherwise, GAM = Inf.

References

[1] Safonov, M.G., A.J. Laub, and G. Hartmann, “Feedback Properties of Multivariable
Systems: The Role and Use of Return Difference Matrix,” IEEE Trans. of
Automat. Contr., AC-26, pp. 47-65, 1981.

[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to
standard H2 and H∞ control problems,” IEEE Transactions on Automatic Control,
vol. 34, no. 8, pp. 831–847, August 1989.

[3] Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers that
satisfy an H∞ norm bound and relations to risk sensitivity,” Systems and Control
Letters, 1988. vol. 11, pp. 167–172, August 1989.

See Also
augw | hinfsyn
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hankelmr
Hankel minimum degree approximation (MDA) without balancing

Syntax
GRED = hankelmr(G)

GRED = hankelmr(G,order)

[GRED,redinfo] = hankelmr(G,key1,value1,...)

[GRED,redinfo] = hankelmr(G,order,key1,value1,...)

Description

hankelmr returns a reduced order model GRED of G and a struct array redinfo
containing the error bound of the reduced model and Hankel singular values of the
original system.

The error bound is computed based on Hankel singular values of G. For a stable system
Hankel singular values indicate the respective state energy of the system. Hence,
reduced order can be directly determined by examining the system Hankel SV's, σι.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥G-
GRED∥ ∞ for well-conditioned model reduced problems [1]:

G Gred i

k

n

− ≤∞
+
∑2

1

σ

Note It seems this method is similar to the additive model reduction routines balancmr
and schurmr, but actually it can produce more reliable reduced order model when the
desired reduced model has nearly controllable and/or observable states (has Hankel
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singular values close to machine accuracy). hankelmr will then select an optimal
reduced system to satisfy the error bound criterion regardless the order one might
naively select at the beginning.

This table describes input arguments for hankelmr.

Argument Description

G LTI model to be reduced (without any other inputs will plot its Hankel
singular values and prompt for reduced order)

ORDER (Optional) an integer for the desired order of the reduced model, or
optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of
a system is kept, because from control stability point of view, getting rid of unstable
state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this
case, reduced order will be determined when the sum of the tails of the Hankel sv's
reaches the 'MaxError'.

Argument Value Description

'MaxError' Real number or vector of different
errors

Reduce to achieve H∞ error.

When present,
'MaxError'overides ORDER
input.

'Weights' {Wout,Win} cell array Optimal 1x2 cell array of LTI
weights Wout (output) and
Win (input). Default for both
is identity. Weights must be
invertible.

'Display' 'on' or 'off' Display Hankel singular plots
(default 'off').

'Order' Integer, vector or cell array Order of reduced model. Use only
if not specified as 2nd argument.
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Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimensional array when
input is a serial of different model order array.

REDINFO A STRUCT array with 4 fields:

• REDINFO.ErrorBound (bound on ∥ G-GRED ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)
• REDINFO.Ganticausal (Anti-causal part of Hankel MDA)

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The optimal Hankel MDA
algorithm has selected the best Minimum Degree Approximate it can find within the
allowable machine accuracy.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234,'twister'); 

G = rss(30,5,4);

[g1, redinfo1] = hankelmr(G); % display Hankel SV plot

        % and prompt for order (try 15:20)

[g2, redinfo2] = hankelmr(G,20); 

[g3, redinfo3] = hankelmr(G,[10:2:18]);

[g4, redinfo4] = hankelmr(G,'MaxError',[0.01, 0.05]);

for i = 1:4

 figure(i); eval(['sigma(G,g' num2str(i) ');']);

end
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Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs) shows a singular value
Bode plot of a random system G with 20 states, 5 output and 4 inputs. The error system
between G and its Zeroth order Hankel MDA has it infinity norm equals to an all pass
function, as shown in All-Pass Error System Between G and Zeroth Order G Anticausal.

The Zeroth order Hankel MDA and its error system sigma plot are obtained via
commands

[g0,redinfo0] = hankelmr(G,0);

sigma(G-redinfo0.Ganticausal)

This interesting all-pass property is unique in Hankel MDA model reduction.

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)



2 Alphabetical List

2-140

All-Pass Error System Between G and Zeroth Order G Anticausal

More About

Algorithms

Given a state-space (A,B,C,D) of a system and k, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the kth order reduced model.

1 Find the controllability and observability grammians P and Q.
2 Form the descriptor

E QP I= − ρ2

where σ ρ σk k> ≥ +1 , and descriptor state-space
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Take SVD of descriptor E and partition the result into kth order truncation form
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4 Form the equivalent state-space model.
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The final kth order Hankel MDA is the stable part of the above state-space
realization. Its anticausal part is stored in redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error system between
the original system G and the Zeroth Order Hankel MDA G0 is an all-pass function [1].



2 Alphabetical List

2-142

References
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See Also
reduce | balancmr | bstmr | ncfmr | schurmr | hankelsv
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hankelsv

Compute Hankel singular values for stable/unstable or continuous/discrete system

Syntax

hankelsv(G)

hankelsv(G,ErrorType,style)

[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style)

Description

[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style) returns a column vector
SV_STAB containing the Hankel singular values of the stable part of G and SV_UNSTAB
of anti-stable part (if it exists). The Hankel SV's of anti-stable part ss(a,b,c,d) is
computed internally via ss(-a,-b,c,d). Discrete model is converted to continuous one
via the bilinear transform.

hankelsv(G) with no output arguments draws a bar graph of the Hankel singular
values such as the following:
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This table describes optional input arguments for hankelsvd.

Argument Value Description

ERRORTYPE 'add'

'mult'

'ncf'

Regular Hankel SV's of G

Hankel SV's of phase matrix

Hankel SV's of coprime factors
STYLE 'abs'

'log'

Absolute value

logarithm scale
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More About

Algorithms

IfErrorType = 'add', then hankelsv implements the numerically robust square root
method to compute the Hankel singular values [1]. Its algorithm goes as follows:

Given a stable model G, with controllability and observability grammians P and Q,
compute the SVD of P and Q:

[Up,Sp,Vp] = svd(P);

[Uq,Sq,Vq] = svd(Q);

Then form the square roots of the grammians:

Lr = Up*diag(sqrt(diag(Sp)));

Lo = Uq*diag(sqrt(diag(Sq)));

The Hankel singular values are simply:

σH =svd(Lo'*Lr);

This method not only takes the advantages of robust SVD algorithm, but also ensure the
computations stay well within the “square root” of the machine accuracy.

If ErrorType = 'mult', then hankelsv computes the Hankel singular value of the
phase matrix of G [2].

If ErrorType = 'ncf', then hankelsv computes the Hankel singular value of the
normalized coprime factor pair of the model [3].

References

[1] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust Control: A Schur
Relative Error Method,” International J. of Adaptive Control and Signal
Processing, Vol. 2, pp. 259-272, 1988.
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[3] Vidyasagar, M., Control System Synthesis - A Factorization Approach. London: The
MIT Press, 1985.

See Also
reduce | balancmr | bstmr | ncfmr | schurmr | hankelmr
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hinfgs
Synthesis of gain-scheduled H∞ controllers

Syntax
[gopt,pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description

Given an affine parameter-dependent plant

P

x A p x B p w B u

z C p x D p w D u

y C x D w D u

& = + +
= + +
= + +


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where the time-varying parameter vector p(t) ranges in a box and is measured in real
time, hinfgs seeks an affine parameter-dependent controller

K
A p B p y

u C p D P y

K K

K K

&ζ ζ
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scheduled by the measurements of p(t) and such that

• K stabilizes the closed-loop system

for all admissible parameter trajectories p(t)
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• K minimizes the closed-loop quadratic H∞ performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys and the
vector r gives the number of controller inputs and outputs (set r=[p2,m2] if y ∊ Rp2

and u ∊ Rm2). Note that hinfgs also accepts the polytopic model of P returned, e.g., by
aff2pol.

hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic
description of the gain-scheduled controller pdK. To test if a closed-loop quadratic
performance γ is achievable, set the third input gmin to γ. The arguments tol and
tolred control the required relative accuracy on gopt and the threshold for order
reduction. Finally, hinfgs also returns solutions R, S of the characteristic LMI system.

Controller Implementation

The gain-scheduled controller pdK is parametrized by p(t) and characterized by the

values KΠj of 
A p B p

C p D p

K K

K K

( ) ( )

( ) ( )









  at the corners ³j of the parameter box. The command

Kj = psinfo(pdK,'sys',j)

returns the j-th vertex controller KΠj while

pv = psinfo(pdP,'par') 

vertx = polydec(pv) 

Pj = vertx(:,j)

gives the corresponding corner ³j of the parameter box (pv is the parameter vector
description).

The controller scheduling should be performed as follows. Given the measurements p(t) of
the parameters at time t,

1 Express p(t) as a convex combination of the ³j:

p t N N j j
i

N

( ) , ,= + + ≥ =
=
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3
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This convex decomposition is computed by polydec.
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2 Compute the controller state-space matrices at time t as the convex combination of
the vertex controllers KΠj:

A t B t

C t D t
KK K

K K
j
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N( ) ( )
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
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Π

3 Use AK(t), BK(t), CK(t), DK(t) to update the controller state-space equations.

References

Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of Linear
Parameter-Varying Systems,” Automatica, 31 (1995), pp. 1251–1261.

Becker, G., Packard, P., “Robust Performance of Linear-Parametrically Varying Systems
Using Parametrically-Dependent Linear Feedback,” Systems and Control Letters, 23
(1994), pp. 205–215.

Packard, A., “Gain Scheduling via Linear Fractional Transformations,” Syst. Contr.
Letters, 22 (1994), pp. 79–92.

See Also
psys | pvec | pdsimul | polydec
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hinfnorm

H∞ norm of dynamic system

Syntax

ninf = hinfnorm(sys)

ninf = hinfnorm(sys,tol)

[ninf,fpeak] = hinfnorm( ___ )

Description

ninf = hinfnorm(sys) returns the H∞ in absolute units of the dynamic system model,
sys.

• If sys is a stable SISO system, then the H∞ norm is the peak gain, the largest value of
the frequency response magnitude.

• If sys is a stable MIMO system, then the H∞ norm is the largest singular value across
frequencies.

• If sys is an unstable system, then the H∞ norm is defined as Inf.
• If sys is a model that has tunable or uncertain parameters, then hinfnorm evaluates

the H∞ norm at the current or nominal value of sys.
• If is a model array, then hinfnorm returns an array of the same size as sys, where

ninf(k) = hinfnorm(sys(:,:,k)) .

For stable systems, hinfnorm(sys) is the same as getPeakGain(sys).

ninf = hinfnorm(sys,tol) returns the H∞ norm of sys with relative accuracy tol.

[ninf,fpeak] = hinfnorm( ___ ) also returns the frequency, fpeak, at which the
peak gain or largest singular value occurs. You can use this syntax with any of the input
arguments in previous syntaxes. If sys is unstable, then fpeak = Inf.
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Examples

Norm of MIMO System

Compute the  norm of the following 2-input, 2-output dynamic system and the
frequency at which the peak singular value occurs.

G = [0 tf([3 0],[1 1 10]);tf([1 1],[1 5]),tf(2,[1 6])];

[ninf,fpeak] = hinfnorm(G)

ninf =

    3.0150

fpeak =

    3.1623

The  norm of a MIMO system is its maximum singular value. Plot the singular values
of G and compare the result from hinfnorm.

sigma(G),grid
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The values ninf and fpeak are consistent with the singular value plot, which displays
the values in dB.

Input Arguments

sys — Input dynamic system
dynamic system model | model array

Input dynamic system, specified as any dynamic system model or model array. sys can be
SISO or MIMO.
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tol — Relative accuracy
0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. hinfnorm
calculates ninf such that the fractional difference between ninf and the true H∞ norm of
sys is no greater than tol.

Output Arguments

ninf — H
∞
 norm of dynamic system

Inf | scalar | array

H∞ norm of sys, returned as Inf, a scalar value, or an array.

• If sys is a single stable model, then ninf is a scalar value.
• If sys is a single unstable model, then ninf is Inf.
• If sys is a model array, then ninf is an array of the same size as sys, where ninf(k)

= hinfnorm(sys(:,:,k)).

fpeak — Frequency of peak gain or largest singular value
Inf | nonnegative real scalar | array

Frequency at which the peak gain or largest singular value occurs, returned as Inf,
a nonnegative real scalar value, or an array. The frequency is expressed in units of
rad/TimeUnit, relative to the TimeUnit property of sys.

• If sys is a single stable model, then fpeak is a scalar.
• If sys is a single unstable model, then fpeak is Inf.
• If sys is a model array, then fpeak is an array of the same size as sys.In this case,

fpeak(k) is the peak gain or largest singular value frequency of the kth model in the
array.

See Also
freqresp | getPeakGain | sigma
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hinfstruct

H∞ tuning of fixed-structure controllers

Syntax

CL = hinfstruct(CL0)

[CL,gamma,info] = hinfstruct(CL0)

[CL,gamma,info] = hinfstruct(CL0,options)

[C,gamma,info] = hinfstruct(P,C0,options)

Description

CL = hinfstruct(CL0) tunes the free parameters of the tunable genss model CL0.
This tuning minimizes the H∞ norm of the closed-loop transfer function modeled by CL0.
The model CL0 represents a closed-loop control system that includes tunable components
such as controllers or filters. CL0 can also include weighting functions that capture
design requirements.

[CL,gamma,info] = hinfstruct(CL0) returns gamma (the minimum H∞ norm) and
a data structure info with additional information about each optimization run.

[CL,gamma,info] = hinfstruct(CL0,options) allows you to specify additional
options for the optimizer using hinfstructOptions.

[C,gamma,info] = hinfstruct(P,C0,options) tunes the parametric
controller blocks C0. This tuning minimizes the H∞ norm of the closed-loop system
CL0 = lft(P,C0). To use this syntax, express your control system and design
requirements as a Standard Form model, as in the following illustration:
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CL0

P is a numeric LTI model that includes the fixed elements of the control architecture.
P can also include weighting functions that capture design requirements. C0 can be a
single tunable component (for example, a Control Design Block or a genss model) or a
cell array of multiple tunable components. C is a parametric model or array of parametric
models of the same types as C0.

Input Arguments

CL0

Generalized state-space (genss) model describing the weighted closed-loop transfer
function of a control system. hinfstruct minimizes the H∞ norm of CL0.

CL0 includes both the fixed and tunable components of the control system in a single
genss model. The tunable components of the control system are represented as Control
Design Blocks, and are stored in the CL0.Blocks property of the genss model.
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P

Numeric LTI model representing the fixed elements of the control architecture to be
tuned. P can also include weighting functions that capture design requirements. You can
obtain P in two ways:

• In MATLAB, model the fixed elements of your control system as numeric LTI models.
Then, use block-diagram building functions (such as connect and feedback) to build
P from the modeled components. Also include any weighting functions that represent
your design requirements.

• If you have a Simulink model of your control system and have Simulink Control
Design, use linlft to obtain a linear model of the fixed elements of your control
system. The linlft command linearizes your Simulink model, excluding specified
Simulink blocks (the blocks that represent the controller elements you want to tune).
If you are using weighting functions to represent your design requirements, connect
them in series with the linear model of your plant to obtain P.

C0

Single tunable component or cell array of tunable components of the control structure.

Each entry in C0 represents one tunable element of your control architecture, such as a
PID controller, a gain block, or a fixed-order transfer function. The entries of C0 can be
Control Design Blocks or genss models.

For more information and examples of creating tunable models, see “Models with
Tunable Coefficients” in the Control System Toolbox™ User's Guide.

options

Set of options for hinfstruct. Use hinfstructOptions to define options. For
information about the available options, see the hinfstructOptions reference page.

Output Arguments
CL

Tuned version of the generalized state-space (genss) model CL0.

The hinfstruct command tunes the free parameters of CL0 to achieve a minimum H∞
norm. CL.Blocks contains the same types of Control Design Blocks as CL0.Blocks,
except that in CL, the parameters have tuned values.
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To access the tuned parameter values, use getValue. You can also access them directly
in CL.Blocks.

C

Tuned versions of the parametric models C0.

When C0 is a single parametric model, C is a parametric model of the same type, with
tuned parameter values.

When C0 is a cell array of parametric models, C is also a cell array. The entries in C are
parametric models of the same type as the corresponding entries in C0.

gamma

Best achieved value for the closed-loop H∞ norm.

In some cases, hinfstruct performs more than one minimization run (when the
hinfstructOptions option RandomStarts > 0). In such cases, gamma is the smallest
H∞ norm of all runs.

info

Data structure array containing results from each optimization run. The fields of info
are:

• Objective — Minimum H∞ norm value for each run.

When RandomStarts = 0, Objective = gamma.
• Iterations — Number of iterations before convergence for each run.
• TunedBlocks — Tuned control design blocks for each run.

TunedBlocks differs from C in that C contains only the result from the best run.
When RandomStarts = 0, TunedBlocks = C.

More About

Tips

• hinfstruct is related to hinfsyn, which also uses H∞ techniques to design a
controller for a MIMO plant. However, unlike hinfstruct, hinfsyn imposes no
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restriction on the structure and order of the controller. For that reason, hinfsyn
always returns a smaller gamma than hinfstruct. You can therefore use hinfsyn
to obtain a lower bound on the best achievable performance.

Algorithms

hinfstruct uses specialized nonsmooth optimization techniques to enforce closed-
loop stability and minimize the H∞ norm as a function of the tunable parameters. These
techniques are based on the work in [1].

hinfstruct computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.
• “What Is hinfstruct?”
• “Formulating Design Requirements as H-Infinity Constraints”
• “Structured H-Infinity Synthesis Workflow”
• “Models with Tunable Coefficients”

References

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on
Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
genss | getValue | hinfstructOptions | hinfsyn | ltiblock.gain |
ltiblock.pid | ltiblock.ss | ltiblock.tf

Related Examples
• “Build Tunable Closed-Loop Model for Tuning with hinfstruct”
• Loop Shaping Design with HINFSTRUCT
• Decoupling Controller for a Distillation Column
• Fixed-Structure Autopilot for a Passenger Jet

http://slicot.org
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hinfstructOptions
Set options for hinfstruct

Syntax

options = hinfstructOptions

options = hinfstructOptions(Name,Value)

Description

options = hinfstructOptions returns the default option set for the hinfstruct
command.

options = hinfstructOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

hinfstructOptions takes the following Name arguments:

'Display'

String determining the amount of information to display during hinfstruct
optimization runs.

Display takes the following values:

• 'off' — hinfstruct runs in silent mode, displaying no information during or after
the run.
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• 'iter' — display optimization progress after each iteration. The display includes
the value of the closed-loop H∞ norm after each iteration. The display also includes
a Progress value indicating the percent change in the H∞ norm from the previous
iteration.

• 'final' — display a one-line summary at the end of each optimization run. The
display includes the minimized value of the closed-loop H∞ norm and the number of
iterations for each run.

Default: 'final'

'MaxIter'

Maximum number of iterations in each optimization run.

Default:  300

'RandomStart'

Number of additional optimizations starting from random values of the free parameters
in the controller.

If RandomStart = 0, hinfstruct performs a single optimization run starting from
the initial values of the tunable parameters. Setting RandomStart = N > 0 runs N
additional optimizations starting from N randomly generated parameter values.

hinfstruct finds a local minimum of the gain minimization problem. To increase
the likelihood of finding parameter values that meet your design requirements, set
RandomStart > 0. You can then use the best design that results from the multiple
optimization runs.

Use with UseParallel = true to distribute independent optimization runs among
MATLAB workers (requires Parallel Computing Toolbox™ software).

Default: 0

'UseParallel'

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among
workers in a parallel pool. If there is an available parallel pool, then the software
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performs independent optimization runs concurrently among workers in that pool. If no
parallel pool is available, one of the following occurs:

• If Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in
those preferences.

• If Automatically create a parallel pool is not selected in your preferences, then
the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can
manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.

Default: false

'TargetGain'

Target H∞ norm.

The hinfstruct optimization stops when the H∞ norm (peak closed-loop gain) falls
below the specified TargetGain value.

Set TargetGain = 0 to optimize controller performance by minimizing the peak closed-
loop gain. Set TargetGain = Inf to just stabilize the closed-loop system.

Default: 0

'TolGain'

Relative tolerance for termination. The optimization terminates when the H∞ norm
decreases by less than TolGain over 10 consecutive iterations. Increasing TolGain
speeds up termination, and decreasing TolGain yields tighter final values.

Default: 0.001

'MaxFrequency'

Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy |p| < 
MaxFrequency.
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To let hinfstruct choose the closed-loop poles automatically based upon the system's
open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or
high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: Inf

'MinDecay'

Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay. Increase this value to
improve the stability of closed-loop poles that do not affect the closed-loop gain due to
pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: 1e-7

Output Arguments

options

Option set containing the specified options for the hinfstruct command.

Examples

Create Options Set for hinfstruct

Create an options set for a hinfstruct run using three random restarts and a stability
offset of 0.001. Also, configure the hinfstruct run to stop as soon as the closed-loop
gain is smaller than 1.

 options = hinfstructOptions('TargetGain',1,...

                          'RandomStart',3,'StableOffset',1e-3);

Alternatively, use dot notation to set the values of options.
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options = hinfstructOptions;

options.TargetGain = 1;

options.RandomStart = 3;

options.StableOffset = 1e-3;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a hinfstruct run using 20 random restarts. Execute these
independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel
computing to speed up hinfstruct tuning of fixed-structure control systems. When you
run multiple randomized hinfstruct optimization starts, parallel computing speeds up
tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences, manually start a parallel pool using parpool. For example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not
need to manually start a pool.

Create an hinfstructOptions set that specifies 20 random restarts to run in parallel.

options = hinfstructOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.

Use the hinfstructOptions set when you call hinfstruct. For example, suppose
you have already created a tunable closed loop model CL0. In this case, the following
command uses parallel computing to tune CL0.

[CL,gamma,info] = hinfstruct(CL0,options);

See Also
hinfstruct
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hinfsyn

Compute H∞ optimal controller for LTI plant

Syntax

[K,CL,GAM,INFO] = hinfsyn(P)

[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON)

[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON,KEY1,VALUE1,KEY2,VALUE2,...)

Description

hinfsyn computes a stabilizing H∞ optimal lti/ss controller K for a partitioned lti
plant P.

P
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The controller, K, stabilizes the P and has the same number of states as P. The system
P is partitioned where inputs to B1 are the disturbances, inputs to B2 are the control
inputs, output of C1 are the errors to be kept small, and outputs of C2 are the output
measurements provided to the controller. B2 has column size (NCON) and C2 has row size
(NMEAS). The optional KEY and VALUE inputs determine tolerance, solution method and
so forth.

The closed-loop system is returned in CL. This closed-loop system is given by CL =
lft(P,K) as in the following diagram.
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w z

P

u y

K

The achieved H∞ cost γ is returned as GAM. The struct array INFO contains additional
information about the design.

Optional Input Arguments

Property Value Description

'GMAX' real Initial upper bound on GAM (default=Inf)
'GMIN' real Initial lower bound on GAM (default=0)
'TOLGAM' real Relative error tolerance for GAM (default=.01)
'S0' real Frequency S0 at which entropy is evaluated, only

applies to METHOD 'maxe' (default=Inf)
'METHOD' 'ric' Standard 2-Riccati solution (default)

'lmi' LMI solution
'maxe' Maximum entropy solution

'DISPLAY' 'off'

'on'

No command window display, or command window
displays synthesis progress information (default)

When DISPLAY='on', the hinfsyn program displays several variables indicating the
progress of the algorithm. For each γ value being tested, the minimum magnitude, real
part of the eigenvalues of the X and Y Hamiltonian matrices are displayed along with
the minimum eigenvalue of X∞ and Y∞, which are the solutions to the X and Y Riccati
equations, respectively. The maximum eigenvalue of X∞Y∞, scaled by γ–2,is also displayed.
A # sign is placed to the right of the condition that failed in the printout.
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Output Arguments Description

K lti controller
CL= lft(P,K) lti closed-loop system 

Ty u
1 1

GAM =

norm(CL,Inf)

H∞ cost γ = 
Ty u

1 1 •

INFO Additional output information

Additional output — structure array INFO containing possible additional information
depending on METHOD)

INFO.AS All solutions controller, lti two-port LFT
INFO.KFI Full information gain matrix (constant feedback

u t K
x t

u t
FI2

1

( )
( )

( )
=











INFO.KFC Full control gain matrix (constant output-injection; KFC is the
dual of KFI)

INFO.GAMFI H∞ cost for full information KFI

INFO.GAMFC H∞ cost for full control KFC

Examples

Following are three simple problems solved via hinfsyn.

Example 1: A random 4-by-5 plant with 3-states, NMEAS=2, NCON=2

rng(0,'twister'); 

P = rss(3,4,5);

[K,CL,GAM] = hinfsyn(P,2,2);

The optimal H∞ cost in this case is GAM = 1.3940. You verify

that T T jy u max y u1 1 1 1∞ ( ) <@ sup ( )
ω

σ ω γ  with a sigma plot
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sigma(CL,ss(GAM));

Example 2: Mixed-Sensitivity

G s
s

s
W

s

s
W W( ) ,

. ( )
, . , .= −

−
+

+
=1

1

0 1 1000

100 1
0 12 3 =   no 1

s=zpk('s');

G=(s-1)/(s+1);

W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=[];

P=augw(G,W1,W2,W3);

[K,CL,GAM]=hinfsyn(P);

sigma(CL,ss(GAM));

In this case, GAM = 0.1854 = –14.6386 db

Example 3: Mixed sensitivity with W1 removed.

s=zpk('s');

G=(s-1)/(s+1);

W1=[]; W2=0.1; W3=[];

P=augw(G,W1,W2,W3);

[K,CL,GAM]=hinfsyn(P);

In this case, GAM=0, K=0, and CL=K*(1+G*K)=0.

Limitation

The plant must be stabilizable from the control inputs u and detectable from the
measurement output y:

• (A,B2) must be stabilizable and (C2,A) must be detectable.

Otherwise, hinfsyn returns an error.

More About

Algorithms

The default 'ric' method uses the two-Riccati formulae ([1],[2]) with loopshifting [3].
In the case of the 'lmi' method, hinfsyn employs the LMI technique ([4],[5],[6]). With
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'METHOD' 'maxe', K returns the max entropy H∞ controller that minimize an entropy
integral relating to the point s0; i.e.,

Entropy = 
γ
π

γ ω ω
ω

2
2

2

0
2 22 1 1 1 1

ln det ( ) ( )I T j T j
s

s
y u y u

o− ′
+





−
−∞

∞
∫ 









dω

where Ty u
1 1

 is the closed-loop transfer function CL. With all methods, hinfsyn uses a
standard γ-iteration technique to determine the optimal value of γ. Starting with high
and low estimates of γ. The γ-iteration is a bisection algorithm that iterates on the value
of γ in an effort to approach the optimal H∞ control design. The stopping criterion for the
bisection algorithm requires the relative difference between the last γ value that failed
and the last γ value that passed be less than TOLGAM (default = .01)

At each value of γ, the algorithm employed requires tests to determine whether a solution
exists for a given γ value. In the case of the 'ric' method, the conditions checked for the
existence of a solution are:

• H and J Hamiltonian matrices (which are formed from the state-space data of P and
the γ level) must have no imaginary-axis eigenvalues.

• the stabilizing Riccati solutions X∞ and Y∞ associated with the Hamiltonian matrices
must exist and be positive, semi-definite.

• spectral radius of (X∞,Y∞) must be less than or equal to γ2.

When, DISPLAY is 'on', the hinfsyn program displays several variables, which indicate
which of the above conditions are satisfied for each γ value being tested. In the case of
the default 'ric' method, the display includes the current value of γ being tested, real
part of the eigenvalues of the X and Y Hamiltonian matrices along with the minimum
eigenvalue of X∞ and Y∞, which are the solutions to the X and Y Riccati equations,
respectively. The maximum eigenvalue of X∞Y∞, scaled by γ–2, is also displayed. A # sign
is placed to the right of the condition that failed in the printout. A similar display is
produced with method 'lmi'

The algorithm works best when the following conditions are satisfied by the plant:
D12 and D21 have full rank.

A j I B

C D

−









ω
2

1 12

 has full column rank for all ω ∊ R.
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A j I B

C D

−









ω
1

2 21

 has full row rank for all ω ∊ R.

When the above rank conditions do not hold, the controller may have undesirable
properties: If D12 and D21 are not full rank, the H∞ controller K may have large high-
frequency gain. If either of the latter two rank conditions does not hold at some frequency
ω, the controller may have very lightly damped poles near that frequency ω.

In general, the solution to the infinity-norm optimal control problem is non-unique.
The controller returned by hinfsyn is only one particular solution, K. When the
'ric' method is selected, the INFO.AS field of INFO contains the all- solution
controller parameterization KAS. All solutions to the infinity-norm control problem are
parameterized by a free stable contraction map Q, which is constrained by Q

•
< 1 . In

other words, the solutions include every stabilizing controller K(s) that makes

T T jy u y u1 1 1 1•
( ) <@ sup ( ) .max

w

s w g

These controllers are given by:

K=lft(INFO.AS,Q)

where Q is a stable LTI system satisfying norm(Q,Inf) <1.

w z

P

u y

KAS

Q

K
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An important use of the infinity-norm control theory is for direct shaping of closed-loop
singular value Bode plots of control systems. In such cases, the system P is typically the
plant augmented with suitable loop-shaping filters — see mixsyn.
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See Also
augw | h2syn | hinfstruct | mktito | ncfsyn | loopsyn
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icomplexify
Helper function for complexify

Syntax

DeltaR = icomplexify(DeltaCR)

Description

icomplexify works on structures to extract a real value from a pair of related fields.

DeltaR = icomplexify(DeltaCR) affects field pairs of DeltaCR named 'foo' and
'foo_cmpxfy' where 'foo' can be any field name. DeltaR is the same as DeltaCR
except that the fields 'foo_cmpxfy' are removed. complexify, by default, complexifies
the real uncertainty with ucomplex atoms, though optionally ultidyn atoms can be
used. If a ucomplex uncertainty was used to complexify the uncertain system, the real
parts of 'foo_cmpxfy' are added to the real parts of 'foo'. If a ultidyn uncertainty
was used to complexify the uncertain system, only the real parts of 'foo' are returned.

See Also
complexify | robuststab
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iconnect
Create empty iconnect (interconnection) objects

Syntax
H = iconnect

Description

Interconnection objects (class iconnect) are an alternative to sysic, and are used to
build complex interconnections of uncertain matrices and systems.

An iconnect object has 3 fields to be set by the user, Input, Output and Equation.
Input and Output are icsignal objects, while Equation.is a cell-array of equality
constraints (using equate) on icsignal objects. Once these are specified, then the
System property is the input/output model, implied by the constraints in Equation.
relating the variables defined in Input and Output.

Examples

iconnect can be used to create the transfer matrix M as described in the following
figure.

Create three scalar icsignal: r, e and y. Create an empty iconnect object, M.
Define the output of the interconnection to be [e; y], and the input to be r. Define two
constraints among the variables: e = r-y, and y = (2/s) e. Get the transfer function
representation of the relationship between the input (r) and the output [e; y].

r = icsignal(1); 

e = icsignal(1); 

y = icsignal(1); 

M = iconnect; 
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M.Input = r; 

M.Output = [e;y]; 

M.Equation{1} = equate(e,r-y); 

M.Equation{2} = equate(y,tf(2,[1 0])*e); 

tf(M.System) 

The transfer functions from input to outputs are

        s 

 #1:  ----- 

      s + 2 

        2 

 #2:  ----- 

      s + 2 

By not explicitly introducing e, this can be done more concisely with only one equality
constraint.

r = icsignal(1); 

y = icsignal(1); 

N = iconnect; 

N.Input = r; 

N.Output = [r-y;y]; 

N.Equation{1} = equate(y,tf(2,[1 0])*(r-y)); 

tf(N.System) 

You have created the same transfer functions from input to outputs.

        s 

 #1:  ----- 

      s + 2 

        2 

 #2:  ----- 

      s + 2 

You can also specify uncertain, multivariable interconnections using iconnect. Consider
two uncertain motor/generator constraints among 4 variables [V;I;T;W], V-R*I-
K*W=0, and T=K*I. Find the uncertain 2x2 matrix B so that [V;T] = B*[W;I].
R = ureal('R',1,'Percentage',[-10 40]); 

K = ureal('K',2e-3,'Percentage',[-30 30]); 

V = icsignal(1); 

I = icsignal(1); 

T = icsignal(1); 



2 Alphabetical List

2-174

W = icsignal(1); 

M = iconnect; 

M.Input = [W;I]; 

M.Output = [V;T]; 

M.Equation{1} = equate(V-R*I-K*W,iczero(1)); 

M.Equation{2} = equate(T,K*I); 

B = M.System 

UMAT: 2 Rows, 2 Columns 

  K: real, nominal = 0.002, variability = [-30  30]%, 2 occurrences 

  R: real, nominal = 1, variability = [-10  40]%, 1 occurrence     

B.NominalValue 

ans = 

    0.0020    1.0000 

         0    0.0020 

A simple system interconnection, identical to the system illustrated in the sysic
reference pages. Consider a three-input, two-output state-space matrix T,

which has internal structure

P = rss(3,2,2); 

K = rss(1,1,2); 

A = rss(1,1,1); 

W = rss(1,1,1); 
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M = iconnect; 

noise = icsignal(1); 

deltemp = icsignal(1); 

setpoint = icsignal(1); 

yp = icsignal(2); 

rad2deg = 57.3 

rad2deg = 

   57.3000 

M.Equation{1} = equate(yp,P*[W*deltemp;A*K*[noise+yp(2);setpoint]]); 

M.Input = [noise;deltemp;setpoint]; 

M.Output = [rad2deg*yp(1);setpoint-yp(2)]; 

T = M.System; 

size(T) 

State-space model with 2 outputs, 3 inputs, and 6 states. 

Limitations

The syntax for iconnect objects and icsignals is very flexible. Without care, you
can build inefficient (i.e., nonminimal) representations where the state dimension of
the interconnection is greater than the sum of the state dimensions of the components.
This is in contrast to sysic. In sysic, the syntax used to specify inputs to systems (the
input_to_ListedSubSystemName variable) forces you to include each subsystem of the
interconnection only once in the equations. Hence, interconnections formed with sysic
are componentwise minimal. That is, the state dimension of the interconnection equals
the sum of the state dimensions of the components.

More About

Algorithms

Each equation represents an equality constraint among the variables. You choose the
input and output variables, and the imp2exp function makes the implicit relationship
between them explicit.

See Also
icsignal | sysic
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icsignal
Create icsignal object of specified dimension

Syntax
v = icsignal(n);

v = icsignal(n,'name')

Description

icsignal creates an icsignal object, which is a symbolic column vector. The
icsignal object is used with iconnect objects to specify signal constraints described by
the interconnection of components.

v = icsignal(n) creates an icsignal object of vector length n. The value of n
must be a nonnegative integer. icsignal objects are symbolic column vectors, used in
conjunction with iconnect (interconnection) objects to specify the signal constraints
described by an interconnection of components.

v = icsignal(n,name) creates an icsignal object of dimension n, with internal
name identifier given by the character string argument name.

See Also
iconnect | sysic
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imp2ss

System realization via Hankel singular value decomposition

Syntax

[a,b,c,d,totbnd,hsv] = imp2ss(y)

[a,b,c,d,totbnd,hsv] = imp2ss(y,ts,nu,ny,tol)

[ss,totbnd,hsv] = imp2ss(imp)

[ss,totbnd,hsv] = imp2ss(imp,tol)

Description

The function imp2ss produces an approximate state-space realization of a given impulse
response

 imp=mksys(y,t,nu,ny,'imp');

using the Hankel SVD method proposed by S. Kung [2]. A continuous-time realization
is computed via the inverse Tustin transform (using bilin) if t is positive; otherwise
a discrete-time realization is returned. In the SISO case the variable y is the impulse
response vector; in the MIMO case y is an N+1-column matrix containing N + 1 time
samples of the matrix-valued impulse response H0, ..., HN of an nu-input, ny-output
system stored row-wise:
y = [H0(:)′;H2(:)′; H3(:)′; ... ;HN(:)′

The variable tol bounds the H∞ norm of the error between the approximate realization
(a, b, c, d) and an exact realization of y; the order, say n, of the realization (a, b, c,
d) is determined by the infinity norm error bound specified by the input variable
tol. The inputs ts, nu, ny, tol are optional; if not present they default to the
values ts = 0, nu = 1, ny = (number of rows of y)/nu, tol = 0 01

1
. σ . The output

hsv = ′[ , , ...]σ σ1 2 returns the singular values (arranged in descending order of magnitude)
of the Hankel matrix:
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Denoting by GN a high-order exact realization of y, the low-order approximate model G
enjoys the H∞ norm bound

G G totbndN− ≤∞

where

totbnd i

i n

N

=
= +
∑2

1

σ .

More About

Algorithms

The realization (a, b, c, d) is computed using the Hankel SVD procedure proposed by
Kung [2] as a method for approximately implementing the classical Hankel factorization
realization algorithm. Kung's SVD realization procedure was subsequently shown to be
equivalent to doing balanced truncation (balmr) on an exact state-space realization of
the finite impulse response {y(1),....y(N)} [3]. The infinity norm error bound for discrete
balanced truncation was later derived by Al-Saggaf and Franklin [1]. The algorithm is as
follows:

1 Form the Hankel matrix Γ from the data y.
2 Perform SVD on the Hankel matrix

Γ = ∑ = [ ] ∑
∑


















 = ∑U V U U

V

V
U V*

*

*
*1 2

1

2

1

2
1 1 1

0

0

where Σ1 has dimension n × n and the entries of Σ2 are nearly zero. U1 and V1 have
ny and nu columns, respectively.
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3 Partition the matrices U1 and V1 into three matrix blocks:

U

U

U

U

V

V

V

1

11

12

13

11

12

13

=
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
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


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


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







where U U Cny n
11 13, ∈ ×   and V V C

nu n
11 13, ∈ ×  .

4 A discrete state-space realization is computed as

A U

B V

C U

D H

= ∑ ∑

= ∑

= ∑

=

− −

−

−

1 1

1 11

11 1

0

1
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1

2

1

2

1
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*
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U
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U

U
=


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5 If the sample time t is greater than zero, then the realization is converted to
continuous time via the inverse of the Tustin transform

s

t

z

z

= −
+

2 1

1
 .

Otherwise, this step is omitted and the discrete-time realization calculated in Step 4
is returned.
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ispsys
True for parameter-dependent systems

Syntax
bool = ispsys(sys)

Description

bool = ispsys(sys) returns 1 if sys is a polytopic or parameter-dependent system.

See Also
psys | psinfo
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isuncertain
Check whether argument is uncertain class type

Syntax

B = isuncertain(A)

Description

Returns true if input argument is uncertain, false otherwise. Uncertain classes are
umat, ufrd, uss, ureal, ultidyn, ucomplex, ucomplexm, and udyn.

Examples

In this example, you verify the correct operation of isuncertain on double, ureal, ss,
and uss objects.

isuncertain(rand(3,4)) 

ans = 

     0 

isuncertain(ureal('p',4)) 

ans = 

     1 

isuncertain(rss(4,3,2)) 

ans = 

     0 

isuncertain(rss(4,3,2)*[ureal('p1',4) 6;0 1]) 

ans = 

     1 

Limitations

isuncertain only checks the class of the input argument, and does not actually verify
that the input argument is truly uncertain. Create a umat by lifting a constant (i.e., not-
uncertain) matrix to the umat class.
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A = umat([2 3;4 5;6 7]); 

Note that although A is in class umat, it is not actually uncertain. Nevertheless, based on
class, the result of isuncertain(A) is true.

isuncertain(A) 

ans = 

     1 

The result of simplify(A) is a double, and hence not uncertain.

isuncertain(simplify(A)) 

ans = 

     0 
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lftdata
Decompose uncertain objects into fixed normalized and fixed uncertain parts

Syntax
[M,Delta] = lftdata(A);

[M,Delta] = lftdata(A,List);

[M,Delta,Blkstruct] = lftdata(A);

[M,Delta,Blkstruct,Normunc] = lftdata(A);

Description

lftdata  decomposes an uncertain object into a fixed certain part and a normalized
uncertain part. lftdata can also partially decompose an uncertain object into an
uncertain part and a normalized uncertain part. Uncertain objects (umat, ufrd, uss)
are represented as certain (i.e., not-uncertain) objects in feedback with block-diagonal
concatenations of uncertain elements.

[M,Delta] = lftdata(A) separates the uncertain object A into a certain object M and
a normalized uncertain matrix Delta such that A is equal to lft(Delta,M), as shown
below.

Delta

M

If A is a umat, then M will be double; if A is a uss, then M will be ss; if A is a ufrd, then
M will be frd. In all cases, Delta is a umat.

[M,Delta] = lftdata(A,List) separates the uncertain object A into an uncertain
object M, in feedback with a normalized uncertain matrix Delta. List is a cell (or char)
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array of names of uncertain elements of A that make up Delta. All other uncertainty in A
remains in M.

lftdata(A,fieldnames(A.Uncertainty)) is the same as lftdata(A).

[M,DELTA,BLKSTRUCT] = lftdata(A) returns an N-by-1 structure array BLKSTRUCT,
where BLKSTRUCT(i) describes the i-th normalized uncertain element. This uncertainty
description can be passed directly to the low-level structured singular value analysis
function mussv.

[M,DELTA,BLKSTRUCT,NORMUNC] = lftdata(A) returns the cell array
NORMUNC of normalized uncertain elements. Each normalized element has the
string 'Normalized' appended to its original name to avoid confusion. Note that
lft(blkdiag(NORMUNC{:}),M) is equivalent to A.

Examples

Create an uncertain matrix A with 3 uncertain parameters p1, p2 and p3. You can
decompose A into its certain, M, and normalized uncertain parts, Delta.

p1 = ureal('p1',-3,'perc',40); 

p2 = ucomplex('p2',2); 

A = [p1 p1+p2;1 p2]; 

[M,Delta] = lftdata(A); 

You can inspect the difference between the original uncertain matrix, A, and the result
formed by combining the two results from the decomposition.

simplify(A-lft(Delta,M)) 

ans = 

     0     0 

     0     0 

M 

M = 

         0         0    1.0954    1.0954 

         0         0         0    1.0000 

    1.0954    1.0000   -3.0000   -1.0000 

         0    1.0000    1.0000    2.0000 

You can check the worst-case norm of the uncertain part using wcnorm. Compare
samples of the uncertain part A with the uncertain matrix A.
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wcn = wcnorm(Delta) 

wcn = 

    lbound: 1.0000 

    ubound: 1.0001 

usample(Delta,5) 

ans(:,:,1) = 

   0.8012                  0          

        0             0.2499 + 0.6946i 

ans(:,:,2) = 

   0.4919                  0          

        0             0.2863 + 0.6033i 

ans(:,:,3) = 

  -0.1040                  0          

        0             0.7322 - 0.3752i 

ans(:,:,4) = 

   0.8296                  0          

        0             0.6831 + 0.1124i 

ans(:,:,5) = 

   0.6886                  0          

        0             0.0838 + 0.3562i 

Uncertain Systems

Create an uncertain matrix A with 2 uncertain real parameters v1 and v2 and create an
uncertain system G using A as the dynamic matrix and simple matrices for the input and
output.

A = [ureal('p1',-3,'perc',40) 1;1 ureal('p2',-2)]; 

sys = ss(A,[1;0],[0 1],0);

sys.InputGroup.ActualIn = 1; 

sys.OutputGroup.ActualOut = 1; 

You can decompose G into a certain system, Msys, and a normalized uncertain matrix,
Delta. You can see from Msys that it is certain and that the input and output groups
have been adjusted.

[Msys,Delta] = lftdata(sys); 

Msys 

a = 

       x1  x2 

   x1  -3   1 

   x2   1  -2 
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b = 

          u1     u2     u3 

   x1  1.095      0      1 

   x2      0      1      0 

c = 

          x1     x2 

   y1  1.095      0 

   y2      0      1 

   y3      0      1 

d = 

       u1  u2  u3 

   y1   0   0   0 

   y2   0   0   0 

   y3   0   0   0 

Input groups:            

      Name      Channels 

    ActualIn       3     

     p1_NC         1     

     p2_NC         2     

                         

Output groups:           

      Name       Channels 

    ActualOut       3    

      p1_NC         1    

      p2_NC         2    

                         

Continuous-time model. 

You can compute the norm on samples of the difference between the original uncertain
matrix and the result formed by combining Msys and Delta.

norm(usample(sys-lft(Delta,Msys),'p1',4,'p2',3),'inf') 

ans = 

     0     0     0 

     0     0     0 

     0     0     0 

     0     0     0 
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Partial Decomposition

Create an uncertain matrix A and derive an uncertain matrix B using an implicit-to-
explicit conversion, imp2exp. Note that B has 2 uncertain parameters R and K. You can
decompose B into certain, M, and normalized uncertain parts, Delta.

R = ureal('R',1,'Percentage',[-10 40]); 

K = ureal('K',2e-3,'Percentage',[-30 30]); 

A = [1 -R 0 -K;0 -K 1 0]; 

Yidx = [1 3]; 

Uidx = [4 2]; 

B = imp2exp(A,Yidx,Uidx); 

[M,Delta] = lftdata(B); 

The same operation can be performed by defining the uncertain parameters, K and R, to
be extracted.

[MK,DeltaR] = lftdata(B,'R'); 

MK 

UMAT: 3 Rows, 3 Columns 

  K: real, nominal = 0.002, variability = [-30  30]%, 2 occurrences 

[MR,DeltaK] = lftdata(B,'K'); 

MR 

UMAT: 4 Rows, 4 Columns 

  R: real, nominal = 1, variability = [-10  40]%, 1 occurrence 

simplify(B-lft(Delta,M)) 

ans = 

     0     0 

     0     0 

simplify(B-lft(DeltaR,MK)) 

ans = 

     0     0 

     0     0 

simplify(B-lft(DeltaK,MR)) 

ans = 

     0     0 

     0     0 

Sample and inspect the uncertain part as well as the difference between the original
uncertain matrix and the sampled matrix. You can see the result formed by combining
the two results from the decomposition.

[Mall,Deltaall] = lftdata(B,{'K';'R'}); 
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simplify(Mall)-M 

ans = 

     0     0     0     0     0 

     0     0     0     0     0 

     0     0     0     0     0 

     0     0     0     0     0 

     0     0     0     0     0 

See Also
lft | ssdata
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lmiedit

Specify or display systems of LMIs as MATLAB expressions

Syntax

lmiedit

Description

lmiedit is a graphical user interface for the symbolic specification of LMI problems.
Typing lmiedit calls up a window with two editable text areas and various buttons. To
specify an LMI system,

1 Give it a name (top of the window).
2 Declare each matrix variable (name and structure) in the upper half of the window.

The structure is characterized by its type (S for symmetric block diagonal, R for
unstructured, and G for other structures) and by an additional structure matrix
similar to the second input argument of lmivar. Please use one line per matrix
variable in the text editing areas.

3 Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI
can stretch over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by
pressing the corresponding button:

• Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI
system (view commands buttons)

• Conversely, display the symbolic expression of the LMI system produced by a
particular sequence of lmivar/lmiterm commands (click the describe... buttons)

• Save the symbolic description of the LMI system as a MATLAB string (save button).
This description can be reloaded later on by pressing the load button

• Read a sequence of lmivar/lmiterm commands from a file (read button). The matrix
expression of the LMI system specified by these commands is then displayed by
clicking on describe the LMIs...
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• Write in a file the sequence of lmivar/lmiterm commands needed to specify a
particular LMI system (write button)

• Generate the internal representation of the LMI system by pressing create. The
result is written in a MATLAB variable with the same name as the LMI system

More About

Tips

Editable text areas have built-in scrolling capabilities. To activate the scroll mode, click
in the text area, maintain the mouse button down, and move the mouse up or down. The
scroll mode is only active when all visible lines have been used.

See Also
lmivar | lmiterm | newlmi | lmiinfo
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lmiinfo
Information about variables and term content of LMIs

Syntax
lmiinfo

Description

lmiinfo provides qualitative information about the system of LMIs lmisys. This
includes the type and structure of the matrix variables, the number of diagonal blocks in
the inner factors, and the term content of each block.

lmiinfo is an interactive facility where the user seeks specific pieces of information.
General LMIs are displayed as

N' * L(x) * N < M' * R(x) * M

where N,M denote the outer factors and L,R the left and right inner factors. If the outer
factors are missing, the LMI is simply written as

L(x) < R(x)

If its right side is zero, it is displayed as

N' * L(x) * N < 0

Information on the block structure and term content of L(x) and R(x) is also available.
The term content of a block is symbolically displayed as

C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1

with the following conventions:

• X1, X2, x3 denote the problem variables. Upper-case X indicates matrix variables
while lower-case x indicates scalar variables. The labels 1,2,3 refer to the first, second,
and third matrix variable in the order of declaration.

• Cj refers to constant terms. Special cases are I and –I (I = identity matrix).
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• Aj, Bj denote the left and right coefficients of variable terms. Lower-case letters
such as a2 indicate a scalar coefficient.

• Qj is used exclusively with scalar variables as in x3*Q1.

The index j in Aj, Bj, Cj, Qj is a dummy label. Hence C1 may appear in several
blocks or several LMIs without implying any connection between the corresponding
constant terms. Exceptions to this rule are the notations A1*X2*A1' and A1*X2*B1 +
B1'*X2'*A1' which indicate symmetric terms and symmetric pairs in diagonal blocks.

Examples

Consider the LMI

0
2− + + +

−













X A YB B Y A I XC

C X zI

T T T

T

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If this LMI is
described in lmis, information about X and the LMI block structure can be obtained as
follows:

lmiinfo(lmis)

 

                  LMI ORACLE 

                –------

This is a system of 1 LMI with 3 variable matrices

Do you want information on 

    (v) matrix variables     (l) LMIs     (q) quit

?> v

Which variable matrix (enter its index k between 1 and 3) ? 1

    X1 is a 2x2 symmetric block diagonal matrix 

      its (1,1)-block is a full block of size 2

                      -------

This is a system of 1 LMI with 3 variable matrices
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Do you want information on 

    (v) matrix variables     (l) LMIs     (q) quit

?> l

Which LMI (enter its number k between 1 and 1) ? 1

    This LMI is of the form

            0 < R(x)

where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?

    (w) whole factor     (b) only one block 

    (o) other LMI        (t) back to top level

?> w

Info about the right inner factor

    block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'

    block (2,1) : A3*X1

    block (2,2) : x3*A4

    (w) whole factor     (b) only one block 

    (o) other LMI        (t) back to top level

                    –------

This is a system of 1 LMI with 3 variable matrices

Do you want information on 

    (v) matrix variables     (l) LMIs     (q) quit

?> q

It has been a pleasure serving you!

Note that the prompt symbol is ?> and that answers are either indices or letters. All
blocks can be displayed at once with option (w), or you can prompt for specific blocks
with option (b).
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More About

Tips

lmiinfo does not provide access to the numerical value of LMI coefficients.

See Also
decinfo | lminbr | matnbr | decnbr
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lminbr
Return number of LMIs in LMI system

Syntax
k = lminbr(lmisys)

Description

lminbr returns the number k of linear matrix inequalities in the LMI problem described
in lmisys.

See Also
lmiinfo | matnbr
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lmireg
Specify LMI regions for pole placement

Syntax
region = lmireg

region = lmireg(reg1,reg2,...)

Description

lmireg is an interactive facility to specify the LMI regions involved in multi-objective H∞
synthesis with pole placement constraints (see msfsyn). Recall that an LMI region is any
convex subset D of the complex plane that can be characterized by an LMI in z and z¯,
i.e.,

D z C L Mz M z
T= ∈ + + <{ : }0

for some fixed real matrices M and L = LT. This class of regions encompasses half planes,
strips, conic sectors, disks, ellipses, and any intersection of the above.

Calling lmireg without argument starts an interactive query/answer session where
you can specify the region of your choice. The matrix region = [L, M] is returned upon
termination. This matrix description of the LMI region can be passed directly to msfsyn
for synthesis purposes.

The function lmireg can also be used to intersect previously defined LMI regions reg1,
reg2,.... The output region is then the [L, M] description of the intersection of these
regions.

See Also
msfsyn
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lmiterm
Specify term content of LMIs

Syntax
lmiterm(termID,A,B,flag)

Description

lmiterm specifies the term content of an LMI one term at a time. Recall that LMI term
refers to the elementary additive terms involved in the block-matrix expression of the
LMI. Before using lmiterm, the LMI description must be initialized with setlmis and
the matrix variables must be declared with lmivar. Each lmiterm command adds one
extra term to the LMI system currently described.

LMI terms are one of the following entities:

• outer factors
• constant terms (fixed matrices)
• variable terms AXB or AXTB where X is a matrix variable and A and B are given

matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in
the blocks on or below the diagonal (or equivalently, only the terms in blocks on or
above the diagonal). For instance, specify the blocks (1,1), (2,1), and (2,2) in a two-block
LMI.

In the calling of lmiterm, termID is a four-entry vector of integers specifying the term
location and the matrix variable involved.

termID 
p

p
( )1 =

+
−





where positive p is for terms on the left-side of the p-th LMI and negative p is for terms
on the right-side of the p-th LMI.
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Recall that, by convention, the left side always refers to the smaller side of the LMI. The
index p is relative to the order of declaration and corresponds to the identifier returned
by newlmi.

termID
0,0  for outer factors

 for terms in the 
( : )

[ , ]
2 3 =

[ ]
i j (( , )i j -th block of the left or right inner factor

termID





(( )

-

4 =

0 for outer factors

 for variable terms 

 for var

x AXB

x iiable terms AX BT









where x is the identifier of the matrix variable X as returned by lmivar.

The arguments A and B contain the numerical data and are set according to:

Type of Term A B

outer factor N matrix value of N omit
constant term C matrix value of C omit
variable term

AXB or AXTB

matrix value of A

(1 if A is absent)

matrix value of B

(1 if B is absent)

Note that identity outer factors and zero constant terms need not be specified.

The extra argument flag is optional and concerns only conjugated expressions of the
form
(AXB) + (AXBT) = AXB + BTX(T)AT

in diagonal blocks. Setting flag = 's' allows you to specify such expressions with a
single lmiterm command. For instance,

lmiterm([1 1 1 X],A,1,'s')

adds the symmetrized expression AX + XTAT to the (1,1) block of the first LMI and
summarizes the two commands

lmiterm([1 1 1 X],A,1) 

lmiterm([1 1 1 –X],1,A')
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Aside from being convenient, this shortcut also results in a more efficient representation
of the LMI.

Examples

Consider the LMI

2 0

0

2 3 1

1

1 1

2

AX A x E DD B X

X B I
M

CX C CX C

fX

T T T

T

T
T T T− +

−













< +
−









 M

where X1, X2 are matrix variables of Types 2 and 1, respectively, and x3 is a scalar
variable (Type 1).

After initializing the LMI description with setlmis and declaring the matrix variables
with lmivar, the terms on the left side of this LMI are specified by:

lmiterm([1 1 1 X2],2*A,A')  % 2*A*X2*A'

lmiterm([1 1 1 x3],-1,E)    % -x3*E 

lmiterm([1 1 1 0],D*D')     % D*D' 

lmiterm([1 2 1 -X1],1,B)    % X1'*B 

lmiterm([1 2 2 0],-1)       % -I

Here X1, X2, X3 should be the variable identifiers returned by lmivar.

Similarly, the term content of the right side is specified by:

lmiterm([-1 0 0 0],M)         % outer factor M 

lmiterm([-1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C' 

lmiterm([-1 2 2 X2],-f,1)     % -f*X2

Note that CX1CT + CX1
TCT is specified by a single lmiterm command with the flag 's'

to ensure proper symmetrization.

See Also
setlmis | lmivar | getlmis | lmiedit | newlmi
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lmivar
Specify matrix variables in LMI problem

Syntax
X = lmivar(type,struct)

[X,n,sX] = lmivar(type,struct)

Description

lmivar defines a new matrix variable X in the LMI system currently described. The
optional output X is an identifier that can be used for subsequent reference to this new
variable.

The first argument type selects among available types of variables and the second
argument struct gives further information on the structure of X depending on its type.
Available variable types include:

type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is
either full (arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or
identically zero.

If X has R diagonal blocks, struct is an R-by-2 matrix where

• struct(r,1) is the size of the r-th block
• struct(r,2) is the type of the r-th block (1 for full, 0 for scalar, –1 for zero block).

type=2: Full m-by-n rectangular matrix. Set struct = [m,n] in this case.

type=3: Other structures. With Type 3, each entry of X is specified as zero or ±x where xn
is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

• struct(i,j)=0 if X(i, j) is a hard zero
• struct(i,j)=n if X(i, j) = xn
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• struct(i,j)=–n if X(i, j) = –xn

Sophisticated matrix variable structures can be defined with Type 3. To specify a
variable X of Type 3, first identify how many free independent entries are involved in X.
These constitute the set of decision variables associated with X. If the problem already
involves n decision variables, label the new free variables as xn+1, . . ., xn+p. The structure
of X is then defined in terms of xn+1, . . ., xn+p as indicated above. To help specify matrix
variables of Type 3, lmivar optionally returns two extra outputs: (1) the total number
n of scalar decision variables used so far and (2) a matrix sX showing the entry-wise
dependence of X on the decision variables x1, . . ., xn.

Examples

Example 1

Consider an LMI system with three matrix variables X1, X2, X3 such that

• X1 is a 3-by-3 symmetric matrix (unstructured),
• X2 is a 2-by-4 rectangular matrix (unstructured),
• X3 =

∆















0 0

0 0

0 0

1

2 2

δ
δ I

where Δ is an arbitrary 5-by-5 symmetric matrix, δ1 and δ2 are scalars, and I2 denotes
the identity matrix of size 2.

These three variables are defined by

setlmis([]) 

X1 = lmivar(1,[3 1])          % Type 1 

X2 = lmivar(2,[2 4])          % Type 2 of dim. 2x4 

X3 = lmivar(1,[5 1;1 0;2 0])  % Type 1

The last command defines X3 as a variable of Type 1 with one full block of size 5 and two
scalar blocks of sizes 1 and 2, respectively.
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Example 2

Combined with the extra outputs n and sX of lmivar, Type 3 allows you to specify fairly
complex matrix variable structures. For instance, consider a matrix variable X with
structure

X
X

X
=











1

2

0

0

where X1 and X2 are 2-by-3 and 3-by-2 rectangular matrices, respectively. You can specify
this structure as follows:

1 Define the rectangular variables X1 and X2 by

setlmis([]) 

[X1,n,sX1] = lmivar(2,[2 3]) 

[X2,n,sX2] = lmivar(2,[3 2])

The outputs sX1 and sX2 give the decision variable content of X1 and X2:

sX1

sX1 = 

    1     2     3 

    4     5     6

sX2

sX2 = 

    7     8 

    9     10 

    11     12

For instance, sX2(1,1)=7 means that the (1,1) entry of X2 is the seventh decision
variable.

2 Use Type 3 to specify the matrix variable X and define its structure in terms of those
of X1 and X2:

[X,n,sX] = lmivar(3,[sX1,zeros(2);zeros(3),sX2])

The resulting variable X has the prescribed structure as confirmed by
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sX

sX = 

    1    2    3    0    0    

    4    5    6    0    0    

    0    0    0    7    8    

    0    0    0    9    10    

    0    0    0    11 12

See Also
setlmis | lmiterm | getlmis | lmiedit | skewdec | delmvar | setmvar
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loopmargin

Stability margin analysis of LTI and Simulink feedback loops

Syntax

[cm,dm,mm] = loopmargin(L)

[m1,m2] = loopmargin(L,MFLAG)

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C)

[m1,m2,m3] = loopmargin(P,C,MFLAG)

Description

[cm,dm,mm] = loopmargin(L) analyzes the multivariable feedback loop consisting
of the loop transfer matrix L (size N-by-N) in negative feedback with an N-by-N identity
matrix.

cm, or classical gain and phase margins, is an N-by-1 structure corresponding to loop-at-
a-time gain and phase margins for each channel (See allmargin for details on the fields
of cm.)

dm is an N-by-1 structure corresponding to loop-at-a-time disk gain and phase margins
for each channel. The disk margin for the i-th feedback channel defines a circular region
centered on the negative real axis at the average GainMargin (GM), e.g. , (GMlow+GMhigh)/2,
such that L(i,i) does not enter that region. Gain and phase disk margin bounds
are derived from the radius of the circle, calculated based on the balanced sensitivity
function.

mm, the multiloop disk margin, is a structure. mm describes how much independent and
concurrent gain and phase variation can occur independently in each feedback channel
while maintaining stability of the closed-loop system. Note that mm is a single structure,
independent of the number of channels. This is because variations in all channels are
considered simultaneously. As in the case for disk margin, the guaranteed bounds are
calculated based on a balanced sensitivity function.
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If L is a ss/tf/zpk object, the frequency range and number of frequency points used to
calculate dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character
string argument. [m1,m2] = loopmargin(L,'m,c') returns the multi-loop
diskmargin ('m') in m1, and the classical margins ('c') in m2. Use 'd' to specify the
disk margin. This optional second argument may be any combination, in any order, of the
3 characters 'c', 'd' and 'm'.

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = (P,C) analyzes the multivariable feedback
loop consisting of the controller C in negative feedback with the plant, P. C should only
be the compensator in the feedback path, without reference channels, if it is a 2-Dof
architecture. That is, if the closed-loop system has a 2-Dof architecture the reference
channel of the controller should be eliminated, resulting in a 1-Dof architecture, as
shown.

cmi,dmi and mmi structures correspond to the classical loop-at-a-time gain and phase
margins, disk margins and multiloop channel margins at the plant input respectively.
The structures cmo, dmo and mmo have the same fields as described for cmi, dmi and
mmi though they correspond to the plant outputs. mmio, or multi-input/multi-output
margins, is a structure corresponding to simultaneous, independent, variations in all the
individual input and output channels of the feedback loops. mmio has the same fields as
mmi and mmo.

If the closed-loop system is an ss/tf/zpk, the frequency range and number of points
used to calculate cm, dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character
string argument. [m1,m2,m3] = (L,'mo,ci,mm') returns the multi-loop diskmargin
at the plant output ('mo') in m1, the classical margins at the plant input ('ci') in m2,
and the disk margins for simultaneous, independent variations in all input and output
channels ('mm') in m3. This optional third argument may be any comnination, in any
order, of the 7 character pairs 'ci', 'di', 'mi', 'co', 'do, 'mo', and 'mm'.
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Usage with Simulink

[cm,dm,mm] = loopmargin(Model,Blocks,Ports) does a multi-loop stability
margin analysis using Simulink Control Design software. Model specifies the name
of the Simulink diagram for analysis. The margin analysis points are defined at the
output ports (Ports) of blocks (Blocks) within the model. Blocks is a cell array of full
block path names and Ports is a vector of the same dimension as Blocks. If all Blocks
have a single output port, then Ports would be a vector of ones with the same length as
Blocks.

Three types of stability margins are computed: loop-at-a-time classical gain and phase
margins (cm), loop-at-a-time disk margins (dm) and a multi-loop disk margin (mm).

[cm,dm,mm] = loopmargin(Model,Blocks,Ports,OP) uses the operating point
object OP to create linearized systems from the Simulink Model.

[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP) returns info
in addition to the margins. info is a structure with fields OperatingPoint,
LinearizationIO and SignalNames corresponding to the analysis.

Margin output arguments can be limited to only those requested using an optional
charcter string argument. INFO is always the last output. For example, [mm,cm,info]
= loopmargin(Model,Blocks,Ports,'m,c') returns the multi-loop diskmargin
('m') in mm, the classical margins ('c') in cm, and the info structure.

Basic Syntax

[cm,dm,mm] = loopmargin(L) cm is calculated using the allmargin command and
has the same fields as allmargin. The cm is a structure with the following fields:

Field Description

GMFrequency All –180 deg crossover frequencies (in radians-per-second)
GainMargin Corresponding gain margins (GM = 1/L where L is the gain at

crossover)
PhaseMargin Corresponding phase margins (in degrees)
PMFrequency All 0 dB crossover frequencies (in radians-per-second)
DelayMargin Delay margins (in seconds for continuous-time systems, and

multiples of the sample time for discrete-time systems)
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Field Description

Stable 1 if nominal closed loop is stable, 0 otherwise. If L is a frd or ufrd
object, the Stable flag is set to NaN.

dm, or Disk Margin, is a structure with the following fields

Field Description

GainMargin Smallest gain variation (GM) such that a disk centered at the point -
(GM(1) + GM(2))/2 would just touch the loop transfer function

PhaseMargin Smallest phase variation, in degrees, corresponding to the disk
described in the GainMargin field (degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in radians-per-
second)

mm is a structure with the following fields.

Field Description

GainMargin Guaranteed bound on simultaneous, independent, gain variations
allowed in all plant channels

PhaseMargin Guaranteed bound on simultaneous, independent, phase variations
allowed in all plant channels (degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in radians-per-
second)

Examples

MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or
distance to –1) can be inaccurate measures of multivariable robustness margins. You
will see that margins of the individual loops can be very sensitive to small perturbations
within other loops.

The nominal closed-loop system considered here is as follows
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G and K are 2-by-2 multiinput/multioutput (MIMO) systems, defined as

G

s

s s

s s

K I=
+

− +

− + −




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
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
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=
1 1
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2

2
2

α

α α

α α

( )

( )
,  

Set α: = 10, construct G in state-space form, and compute its frequency response.

a = [0 10;-10 0]; 

b = eye(2); 

c = [1 8;-10 1]; 

d = zeros(2,2); 

G = ss(a,b,c,d); 

K = [1 -2;0 1]; 

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(G,K); 

First consider the margins at the input to the plant. The first input channel has infinite
gain margin and 90 degrees of phase margin based on the results from the allmargin
command, smi(1). The disk margin analysis, dmi, of the first channel provides similar
results.

cmi(1) 

ans = 

    GMFrequency: [1x0 double] 

     GainMargin: [1x0 double] 

    PMFrequency: 21 

    PhaseMargin: 90 

    DMFrequency: 21 

    DelayMargin: 0.0748 

         Stable: 1 

dmi(1) 

ans = 

     GainMargin: [0 Inf] 

    PhaseMargin: [-90 90] 
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      Frequency: 1.1168 

The second input channel has a gain margin of 2.105 and infinite phase margin based
on the single-loop analysis, cmi(2). The disk margin analysis, dmi(2), which allows
for simultaneous gain and phase variations a loop-at-a-time results in maximum gain
margin variations of 0.475 and 2.105 and phase margin variations of +/- 39.18 degs.

cmi(2) 

ans = 

    GMFrequency: 0 

     GainMargin: 2.1053 

    PMFrequency: [1x0 double] 

    PhaseMargin: [1x0 double] 

    DMFrequency: [1x0 double] 

    DelayMargin: [1x0 double] 

         Stable: 1 

dmi(2) 

ans = 

     GainMargin: [0.4749 2.1056] 

    PhaseMargin: [-39.1912 39.1912] 

      Frequency: 0.0200 

The multiple margin analysis of the plant inputs corresponds to allowing simultaneous,
independent gain and phase margin variations in each channel. Allowing independent
variation of the input channels further reduces the tolerance of the closed-loop system
to variations at the input to the plant. The multivariable margin analysis, mmi, leads
to a maximum allowable gain margin variation of 0.728 and 1.373 and phase margin
variations of +/- 17.87 deg. Hence even though the first channel had infinite gain margin
and 90 degrees of phase margin, allowing variation in both input channels leads to a
factor of two reduction in the gain and phase margin.

mmi 

mmi = 

     GainMargin: [0.7283 1.3730] 

    PhaseMargin: [-17.8659 17.8659] 

      Frequency: 9.5238e-004 

The guaranteed region of phase and gain variations for the closed-loop system can be
illustrated graphically. The disk margin analysis, dmi(2), indicates the closed-loop
system will remain stable for simultaneous gain variations of 0.475 and 2.105 (± 6.465
dB) and phase margin variations of ± 39.18 deg in the second input channel. This is
denoted by the region associated with the large ellipse in the following figure. The
multivariable margin analysis at the input to the plant, mmi, indicates that the closed-
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loop system will be stable for independent, simultaneous, gain margin variation up to
0.728 and 1.373 (±2.753 dB) and phase margin variations up to ± 17.87 deg (the dark
ellipse region) in both input channels.

The output channels have single-loop margins of infinite gain and 90 deg phase
variation. The output multivariable margin analysis, mmo, leads to a maximum allowable
gain margin variation of 0.607 and 1.649 and phase margin variations of +/- 27.53 degs.
Hence even though both output channels had infinite gain margin and 90 degrees of
phase margin, simultaneous variations in both channels significantly reduce the margins
at the plant outputs.

mmo 

mmo = 

     GainMargin: [0.6065 1.6489] 

    PhaseMargin: [-27.5293 27.5293] 

      Frequency: 0.2287 

If all the input and output channels are allow to vary independently, mmio, the gain
margin variation allow are 0.827 and 1.210 and phase margin variations allowed are +/-
10.84 deg.

mmio 
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mmio = 

     GainMargin: [0.8267 1.2097] 

    PhaseMargin: [-10.8402 10.8402] 

      Frequency: 0.2287 

More About

Algorithms

Two well-known loop robustness measures are based on the sensitivity function S=(I–L)–

1 and the complementary sensitivity function T=L(I–L)–1 where L is the loop gain matrix
associated with the input or output loops broken simultaneously. In the following figure,
S is the transfer matrix from summing junction input u to summing junction output e.
T is the transfer matrix from u to y. If signals e and y are summed, the transfer matrix
from u to e+y is given by (I+L)· (I–L)–1, the balanced sensitivity function. It can be shown
(Dailey, 1991, Blight, Daily and Gangass, 1994) that each broken-loop gain can be
perturbed by the complex gain (1+Δ)(1–Δ) where |Δ|<1/µ(S+T) or |Δ|<1/σmax(S+T) at
each frequency without causing instability at that frequency. The peak value of µ(S+T) or
σmax(S+T) gives a robustness guarantee for all frequencies, and for µ(S+T) the guarantee
is nonconservative (Blight, Daily and Gangass, 1994).

This figure shows a comparison of a disk margin analysis with the classical notations of
gain and phase margins.
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The Nyquist plot is of the loop transfer function L(s)

L s

s

s s s

( )
( )( . )

=
+

+ + +
30

1

1 1 6 16
2

• The Nyquist plot of L corresponds to the blue line.
• The unit disk corresponds to the dotted red line.
• GM and PM indicate the location of the classical gain and phase margins for the

system L.
• DGM and DPM correspond to the disk gain and phase margins. The disk margins

provide a lower bound on classical gain and phase margins.
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• The disk margin circle corresponds to the dashed black line. The disk margin
corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the
loop transfer function L. This location is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the balanced
sensitivity function S+T. For a given peak value of µ(S+T), any simultaneous phase and
gain variations applied to each loop independently will not destabilize the system if the
perturbations remain inside the corresponding circle or disk. This corresponds to the disk
margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the balanced sensitivity
function S+T. Instead of calculating µ(S+T) a single loop at a time, all the channels
are included in the analysis. A µ- analysis problem is formulated with each channel
perturbed by an independent, complex perturbation. The peak µ(S+T) value guarantees
that any simultaneous, independent phase and gain variations applied to each loop
simultaneously will not destabilize the system if they remain inside the corresponding
circle or disk of size µ(S+T).

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems,
Ph.D. Thesis, Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, “Practical control law design for aircraft using
multivariable techniques,” International Journal of Control, Vol. 59, No. 1, 1994, pp.
93-137.

Bates, D., and I. Postlethwaite, “Robust Multivariable Control of Aerospace Systems,”
Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also
allmargin | mussv | bode | loopsens | robuststab | wcgain | wcsens |
wcmargin
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loopsens
Sensitivity functions of plant-controller feedback loop

Syntax
loops = loopsens(P,C)

Description
loops = loopsens(P,C) creates a struct, loops, whose fields contain the
multivariable sensitivity, complementary and open-loop transfer functions. The closed-
loop system consists of the controller C in negative feedback with the plant P. C should
only be the compensator in the feedback path, not any reference channels, if it is a 2-
Dof controller as seen in the figure below. The plant and compensator P and C can be
constant matrices, double, lti objects, frd/ss/tf/zpk, or uncertain objects umat/
ufrd/uss.

The loops returned variable is a structure with fields:

Field Description

Poles Closed-loop poles. NaN for frd/ufrd objects
Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd

objects
Si Input-to-plant sensitivity function
Ti Input-to-plant complementary sensitivity function
Li Input-to-plant loop transfer function
So Output-to-plant sensitivity function
To Output-to-plant complementary sensitivity function
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Field Description

Lo Output-to-plant loop transfer function
PSi Plant times input-to-plant sensitivity function
CSo Compensator times output-to-plant sensitivity function

The multivariable closed-loop interconnection structure, shown below, defines the input/
output sensitivity, complementary sensitivity, and loop transfer functions.

Description Equation

Input sensitivity TF
e d1 1←( ) (I + CP)–1

Input complementary sensitivity TF
e d2 1←( ) CP(I + CP)–1

Output sensitivity TF
e d3 2←( ) (I + PC)–1

Output complementary sensitivity -( )¨TF
e d4 2

PC(I + PC)–1

Input loop transfer function CP
Output loop transfer function PC

Examples

Single Input, Single Output (SISO) Loop Sensitivities

Consider PI controller for a dominantly 1st-order plant, with the closed-loop bandwidth
of 2.5 rads/sec. Since the problem is SISO, all gains are the same at input and output.
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gamma = 2; tau = 1.5; taufast = 0.1;

P = tf(gamma,[tau 1])*tf(1,[taufast 1]);

tauclp = 0.4;

xiclp = 0.8;

wnclp = 1/(tauclp*xiclp);

KP = (2*xiclp*wnclp*tau - 1)/gamma;

KI = wnclp^2*tau/gamma;

C = tf([KP KI],[1 0]);

Form the closed-loop (and open-loop) systems with loopsens, and plot Bode plots using
the gains at the plant input.

loops = loopsens(P,C);

bode(loops.Si,'r',loops.Ti,'b',loops.Li,'g')
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Finally, compare the open-loop plant gain to the closed-loop value of PSi.

bodemag(P,'r',loops.PSi,'b')

Multi Input, Multi Output (MIMO) Loop Sensitivities

Consider an integral controller for a constant-gain, 2-input, 2-output plant. For purposes
of illustration, the controller is designed via inversion, with different bandwidths in each
rotated channel.

P = ss([2 3;-1 1]);

BW = diag([2 5]);

[U,S,V] = svd(P.d);                % get SVD of Plant Gain

Csvd = V*inv(S)*BW*tf(1,[1 0])*U'; % inversion based on SVD
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loops = loopsens(P,Csvd);

bode(loops.So,'g',loops.To,'r.',logspace(-1,3,120))

title('Output Sensitivity (green), Output Complementary Sensitivity (red)');

See Also
loopmargin | wcsens | robuststab | wcmargin



2 Alphabetical List

2-220

loopsyn
H∞ optimal controller synthesis for LTI plant

Syntax
[K,CL,GAM,INFO]=loopsyn(G,Gd)

[K,CL,GAM,INFO]=loopsyn(G,Gd,RANGE)

Description

loopsyn is an H∞ optimal method for loopshaping control synthesis. It computes a
stabilizing H∞controller K for plant G to shape the sigma plot of the loop transfer
function GK to have desired loop shape Gd with accuracy γ = GAM in the sense that if ω0 is
the 0 db crossover frequency of the sigma plot of Gd(jω), then, roughly,

σ ω ω
γ

σ ω ω ωG j K j G jd( ) ( ) ( )( ) ≥ ( ) >1
0  for all 

σ ω ω γ σ ω ω ωG j K j G jd( ) ( ) ( )( ) ≤ ( ) >  for all 0

The STRUCT array INFO returns additional design information, including a MIMO
stable min-phase shaping pre-filter W, the shaped plant Gs = GW, the controller for the
shaped plant Ks = WK, as well as the frequency range {ωmin,ωmax} over which the loop
shaping is achieved

Input Argument Description
G LTI plant
Gd Desired loop-shape (LTI model)
RANGE (optional, default {0,Inf}) Desired frequency range for loop-

shaping, a 1-by-2 cell array {ωmin,ωmax}; ωmax should be at least ten
times ωmin
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Output Argument Description
K LTI controller
CL= G*K/(I

+GK)

LTI closed-loop system

GAM Loop-shaping accuracy (GAM ≥ 1, with GAM=1 being perfect fit
INFO Additional output information
INFO.W LTI pre-filter W satisfying σ(Gd) = σ (GW) for all ω;

W is always minimum-phase.
INFO.Gs LTI shaped plant: Gs = GW.
INFO.Ks LTI controller for the shaped plant: Ks = WK.
INFO.range {ωmin,ωmax} cell-array containing the approximate frequency range

over which loop-shaping could be accurately achieved to with
accuracy G. The output INFO.range is either the same as or a subset
of the input range.

Examples

Optimal loopsyn Loop-Shaping Control

Calculate the optimal loopsyn loop shaping control for a 5-state, 4-output, 5-input plant
with a full-rank nonmininum-phase zero at s = 10.

rng(0,'twister');

s = tf('s');

w0 = 5;

Gd = 5/s;                           % desired bandwidth w0=5

G =((s-10)/(s+100))*rss(3,4,5);     % 4-by-5 non-min-phase plant

[K,CL,GAM,INFO] = loopsyn(G,Gd);

sigma(G*K,'r',Gd*GAM,'k-.',Gd/GAM,'k-.',{.1,100})  % plot result

legend('G*K','Gd*GAM','Gd/GAM')
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This plot shows that the controller K optimally fits sigma(G*K). The controller falls
between sigma(Gd)+ GAM and sigma(Gd)- GAM (expressed in dB). In this example,
GAM = 2.0423 = 6.2026 dB.

Limitations

The plant G must be stabilizable and detectable, must have at least as many inputs as
outputs, and must be full rank; i.e,

• size(G,2) ≥ size(G,1)
• rank(freqresp(G,w)) = size(G,1) for some frequency w.
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The order of the controller K can be large. Generically, when Gd is given as a SISO LTI,
then the order NK of the controller K satisfies
NK = NGs + NW
= NyNGd + NRHP + NW
= NyNGd  + NRHP + NG

where

• Ny denotes the number of outputs of the plant G.
• NRHP denotes the total number of nonstable poles and nonminimum-phase zeros of the

plant G, including those on the stability boundary and at infinity.
• NG, NGs, NGd and NW denote the respective orders of G, Gs, Gd and W.

Model reduction can help reduce the order of K — see reduce and ncfmr.

More About

Algorithms

Using the GCD formula of Le and Safonov [1], loopsyn first computes a stable-
minimum-phase loop-shaping, squaring-down prefilter W such that the shaped plant Gs =
GW is square, and the desired shape Gd is achieved with good accuracy in the frequency
range {ωmin,ωmax} by the shaped plant; i.e.,
σ(Gd) ≈ σ(Gs) for all ω ∊ {ωmin,ωmax}.

Then, loopsyn uses the Glover-McFarlane [2] normalized-coprime-factor control
synthesis theory to compute an optimal “loop-shaping” controller for the shaped plant via
Ks=ncfsyn(Gs), and returns K=W*Ks.

If the plant G is a continuous time LTI and

1 G has a full-rank D-matrix, and
2 no finite zeros on the jω-axis, and
3 {ωmin,ωmax}=[0,∞],

then GW theoretically achieves a perfect accuracy fit σ(Gd) = σ(GW) for all frequency ω.
Otherwise, loopsyn uses a bilinear pole-shifting bilinear transform [3] of the form

Gshifted=bilin(G,-1,'S_Tust',[ωmin,ωmax]),
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which results in a perfect fit for transformed Gshifted and an approximate fit over
the smaller frequency range [ωmin,ωmax] for the original unshifted G provided that ωmax
>> ωmin. For best results, you should choose ωmax to be at least 100 times greater than
ωmin. In some cases, the computation of the optimal W for Gshifted may be singular
or ill-conditioned for the range [ωmin,ωmax], as when Gshifted has undamped zeros or,
in the continuous-time case only, Gshifted has a D-matrix that is rank-deficient); in
such cases, loopsyn automatically reduces the frequency range further, and returns the
reduced range [ωmin,ωmax] as a cell array in the output INFO.range={ωmin,ωmax}
• Loop Shaping of HIMAT Pitch Axis Controller

References

[1] Le, V.X., and M.G. Safonov. Rational matrix GCD's and the design of squaring-down
compensators—a state space theory. IEEE Trans. Autom.Control, AC-36(3):384–
392, March 1992.

[2] Glover, K., and D. McFarlane. Robust stabilization of normalized coprime factor
plant descriptions with H∞-bounded uncertainty. IEEE Trans. Autom. Control,
AC-34(8):821–830, August 1992.

[3] Chiang, R.Y., and M.G. Safonov. H∞ synthesis using a bilinear pole-shifting
transform. AIAA J. Guidance, Control and Dynamics, 15(5):1111–1115,
September–October 1992.

See Also
mixsyn | ncfsyn
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looptune

Tune fixed-structure feedback loops

Syntax

[G,C,gam] = looptune(G0,C0,wc)

[G,C,gam] = looptune(G0,C0,wc,Req1,...,ReqN)

[G,C,gam] = looptune(...,options)

[G,C,gam,info] = looptune(...)

Description

[G,C,gam] = looptune(G0,C0,wc) tunes the feedback loop

G

C

u y

to meet the following default requirements:

• Bandwidth — Gain crossover for each loop falls in the frequency interval wc
• Performance — Integral action at frequencies below wc
• Robustness — Adequate stability margins and gain roll-off at frequencies above wc

The tunable genss model C0 specifies the controller structure, parameters, and
initial values. The model G0 specifies the plant. G0 can be a Numeric LTI model, or,
for co-tuning the plant and controller, a tunable genss model. The sensor signals y
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(measurements) and actuator signals u (controls) define the boundary between plant and
controller.

Note: For tuning Simulink models with looptune, use slTuner to create an interface to
your Simulink model. You can then tune the control system with looptune for slTuner
(requires Simulink Control Design).

[G,C,gam] = looptune(G0,C0,wc,Req1,...,ReqN) tunes the feedback loop
to meet additional design requirements specified in one or more tuning goal objects
Req1,...,ReqN. Omit wc to use the requirements specified in Req1,...,ReqN instead of
an explicit target crossover frequency and the default performance and robustness
requirements.

[G,C,gam] = looptune(...,options) specifies further options, including target
gain margin, target phase margin, and computational options for the tuning algorithm.

[G,C,gam,info] = looptune(...) returns a structure info with additional
information about the tuned result. Use info with the loopview command to visualize
tuning constraints and validate the tuned design.

Input Arguments

G0

Numeric LTI model or tunable genss model representing plant in control system to tune.

The plant is the portion of your control system whose outputs are sensor signals
(measurements) and whose inputs are actuator signals (controls). Use connect to build
G0 from individual numeric or tunable components.

C0

Generalized LTI model representing controller. C0 specifies the controller structure,
parameters, and initial values.

The controller is the portion of your control system that receives sensor signals
(measurements) as inputs and produces actuator signals (controls) as outputs. Use
Control Design Blocks and Generalized LTI models to represent tunable components of
the controller. Use connect to build C0 from individual numeric or tunable components.
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wc

Vector specifying target crossover region [wcmin,wcmax]. The looptune command
attempts to tune all loops in the control system so that the open-loop gain crosses 0 dB
within the target crossover region.

A scalar wc specifies the target crossover region [wc/2,2*wc].

Req1,...,ReqN

One or more TuningGoal objects specifying design requirements, such as
TuningGoal.Tracking, TuningGoal.Gain, or TuningGoal.LoopShape.

options

Set of options for looptune algorithm, specified using looptuneOptions. See
looptuneOptions for information about the available options, including target gain
margin and phase margin.

Output Arguments

G

Tuned plant.

If G0 is a Numeric LTI model, G is the same as G0.

If G0 is a tunable genss model, G is a genss model with Control Design Blocks of the
same number and types as G0. The current value of G is the tuned plant.

C

Tuned controller. C is a genss model with Control Design Blocks of the same number
and types as C0. The current value of C is the tuned controller.

gam

Parameter indicating degree of success at meeting all tuning constraints. A value of
gam <= 1 indicates that all requirements are satisfied. gam >> 1 indicates failure to
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meet at least one requirement. Use loopview to visualize the tuned result and identify
the unsatisfied requirement.

For best results, use the RandomStart option in looptuneOptions to obtain several
minimization runs. Setting RandomStart to an integer N > 0 causes looptune to
run the optimization N additional times, beginning from parameter values it chooses
randomly. You can examine gam for each run to help identify an optimization result that
meets your design requirements.

info

Data for validating tuning results, returned as a structure. To use the data in info, use
the command loopview(G,C,info) to visualize tuning constraints and validate the
tuned design.

info contains the following tuning data:

Di,Do

Optimal input and output scalings, returned as state-space models. The scaled plant is
given by Do\G*Di.

Specs

Design requirements that looptune constructs for its call to systune for tuning (see
“Algorithms” on page 2-230), returned as a vector of TuningGoal requirement objects.

Runs

Detailed information about each optimization run performed by systune when called by
looptune for tuning (see “Algorithms” on page 2-230), returned as a data structure.

The contents of Runs are the info output of the call to systune. For information about
the fields of Runs, see the info output argument description on the systune reference
page.

Examples

Tune the control system of the following illustration, to achieve crossover between 0.1
and 1 rad/min.
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The fixed-structure controller, C, includes three components: the 2-by-2 decoupling
matrix D and two PI controllers PI_L and PI_V. The signals r, y, and e are vector-valued
signals of dimension 2.

Build a numeric model that represents the plant and a tunable model that represents the
controller. Name all inputs and outputs as in the diagram, so that looptune knows how
to interconnect the plant and controller via the control and measurement signals.

s = tf('s');

G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];

G.InputName = {'qL','qV'};

G.OutputName = 'y';

D = ltiblock.gain('Decoupler',eye(2));

D.InputName = 'e';

D.OutputName = {'pL','pV'};

PI_L = ltiblock.pid('PI_L','pi');

PI_L.InputName = 'pL';

PI_L.OutputName = 'qL';

PI_V = ltiblock.pid('PI_V','pi'); 

PI_V.InputName = 'pV';

PI_V.OutputName = 'qV'; 

sum1 = sumblk('e = r - y',2);

C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});

wc = [0.1,1];

[G,C,gam,info] = looptune(G,C0,wc);
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C is the tuned controller, in this case a genss model with the same block types as C0.

You can examine the tuned result using loopview.

Alternatives

For tuning Simulink models with looptune, see slTuner and looptune (requires
Simulink Control Design).

More About

Algorithms

looptune automatically converts target bandwidth, performance requirements, and
additional design requirements into weighting functions that express the requirements
as an H∞ optimization problem. looptune then uses systune to optimize tunable
parameters to minimize the H∞ norm. For more information about the optimization
algorithms, see [1].

looptune computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.

References

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on
Automatic Control, Vol. 51, Number 1, 2006, pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

See Also
TuningGoal.Tracking | slTuner | looptune (for slTuner) |
TuningGoal.Gain | TuningGoal.LoopShape | hinfstruct | systune |
looptuneOptions | loopview | loopmargin | genss | connect

http://slicot.org
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looptuneOptions
Set options for looptune

Syntax

options = looptuneOptions

options = looptuneOptions(Name,Value)

Description

options = looptuneOptions returns the default option set for the looptune
command.

options = looptuneOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

looptuneOptions takes the following Name arguments:

'GainMargin'

Target gain margin in decibels. GainMargin specifies the required gain margin for the
tuned control system. For MIMO control systems, the gain margin is the multiloop disk
margin. See loopmargin for the definition of the multiloop disk margin.

Default: 7.6 dB
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'PhaseMargin'

Target phase margin in degrees. PhaseMargin specifies the required phase margin for
the tuned control system. For MIMO control systems, the phase margin is the multiloop
disk margin. See loopmargin for the definition of the multiloop disk margin.

Default: 45 degrees

'Display'

String determining the amount of information to display during looptune runs.

Display takes the following values:

• 'off' — Run in silent mode, displaying no information during or after the run.
• 'iter' — Display optimization progress after each iteration. The display includes

the value of the objective parameter gam after each iteration. The display also
includes a Progress value, indicating the percent change in gam from the previous
iteration.

• 'final' — Display a one-line summary at the end of each optimization run. The
display includes the minimized value of gam and the number of iterations for each
run.

Default: 'final'

'MaxIter'

Maximum number of iterations in each optimization run.

Default:  300

'RandomStart'

Number of additional optimizations starting from random values of the free parameters
in the controller.

If RandomStart = 0, looptune performs a single optimization run starting from
the initial values of the tunable parameters. Setting RandomStart = N > 0 runs N
additional optimizations starting from N randomly generated parameter values.

looptune tunes by finding a local minimum of a gain minimization problem. To increase
the likelihood of finding parameter values that meet your design requirements, set
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RandomStart > 0. You can then use the best design that results from the multiple
optimization runs.

Use with UseParallel = true to distribute independent optimization runs among
MATLAB workers (requires Parallel Computing Toolbox software).

Default: 0

'UseParallel'

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among
workers in a parallel pool. If there is an available parallel pool, then the software
performs independent optimization runs concurrently among workers in that pool. If no
parallel pool is available, one of the following occurs:

• If Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in
those preferences.

• If Automatically create a parallel pool is not selected in your preferences, then
the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can
manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.

Default: false

'TargetGain'

Target value for the objective parameter gam.

The looptune command converts your design requirements into normalized gain
constraints. The command then tunes the free parameters of the control system to drive
the objective parameter gam below 1 to enforce all requirements.

The default TargetGain = 1 ensures that the optimization stops as soon as gam falls
below 1. Set TargetGain to a smaller or larger value to continue the optimization or
start sooner, respectively.

Default: 1
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'TolGain'

Relative tolerance for termination.

The optimization terminates when the objective parameter gam decreases by less than
TolGain over 10 consecutive iterations. Increasing TolGain speeds up termination, and
decreasing TolGain yields tighter final values.

Default: 0.001

'MaxFrequency'

Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy |p| < 
MaxFrequency.

To allow looptune to choose the closed-loop poles automatically, based upon the
system's open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast
dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: Inf

'MinDecay'

Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay. Increase this value to
improve the stability of closed-loop poles that do not affect the closed-loop gain due to
pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: 1e-7

Output Arguments
options

Option set containing the specified options for the looptune command.
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Examples

Create Options Set for looptune

Create an options set for a looptune run using three random restarts. Also, set the
target gain and phase margins to 6 dB and 50 degrees, respectively, and limit the closed-
loop pole magnitude to 100.

options = looptuneOptions('RandomStart',3','GainMargin',6,...

                'PhaseMargin',50,'SpecRadius',100);

Alternatively, use dot notation to set the values of options.

options = looptuneOptions;

options.RandomStart = 3;

options.GainMargin = 6;

options.PhaseMargin = 50;

options.SpecRadius = 100;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a looptune run using 20 random restarts. Execute these
independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel
computing to speed up looptune tuning of fixed-structure control systems. When you
run multiple randomized looptune optimization starts, parallel computing speeds up
tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences, manually start a parallel pool using parpool. For example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not
need to manually start a pool.

Create a looptuneOptions set that specifies 20 random restarts to run in parallel.

options = looptuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.
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Use the looptuneOptions set when you call looptune. For example, suppose you have
already created a plant model G0 and tunable controller C0. In this case, the following
command uses parallel computing to tune the control system of G0 and C0 to the target
crossoverwc.

[G,C,gamma] = looptune(G0,C0,wc,options);

See Also
| looptune | looptune (for slTuner) | loopmargin
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looptuneSetup

Convert tuning setup for looptune to tuning setup for systune

Syntax

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

Description

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

converts a tuning setup for looptune into an equivalent tuning setup for systune. The
argument looptuneInputs is a sequence of input arguments for looptune that specifies
the tuning setup. For example,

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(G0,C0,wc,Req1,Req2,loopopt)

generates a set of arguments such that looptune(G0,C0,wc,Req1,Req2,loopopt)
and systune(T0,SoftReqs,HardReqs,sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative
to looptune. For example, looptune requires that you tune all channels of a MIMO
feedback loop to the same target bandwidth. Converting to systune allows you to specify
different crossover frequencies and loop shapes for each loop in your control system.
Also, looptune treats all tuning requirements as soft requirements, optimizing them
but not requiring that any constraint be exactly met. Converting to systune allows you
to enforce some tuning requirements as hard constraints, while treating others as soft
requirements.

You can also use this command to probe into the tuning requirements used by looptune.

Note: When tuning Simulink models through an slTuner interface, use
looptuneSetup for slTuner (requires Simulink Control Design).
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Examples

Convert looptune Problem into systune Problem

Convert a set of looptune inputs into an equivalent set of inputs for systune.

Suppose you have a numeric plant model, G0, and a tunable controller model, C0.
Suppose also that you used looptune to tune the feedback loop between G0 and C0 to
within a bandwidth of wc = [wmin,wmax]. Convert these variables into a form that
allows you to use systune for further tuning.

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(C0,G0,wc);

The command returns the closed-loop system and tuning requirements for the equivalent
systune command, systune(CL0,SoftReqs,HardReqs,sysopt). The arrays
SoftReqs and HardReqs contain the tuning requirements implicitly imposed by
looptune. These requirements enforce the target bandwidth and default stability
margins of looptune.

If you used additional tuning requirements when tuning the system with looptune,
add them to the input list of looptuneSetup. For example, suppose you used
a TuningGoal.Tracking requirement, Req1, and a TuningGoal.Rejection
requirement, Req2. Suppose also that you set algorithm options for looptune using
looptuneOptions. Incorporate these requirements and options into the equivalent
systune command.

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(C0,G0,wc,Req1,Req2,loopopt);

The resulting arguments allow you to construct an equivalent tuning problem for
systune. In particular, [~,C] = looptune(C0,G0,wc,Req1,Req2,loopopt) yields
the same result as the following commands.

T = systune(T0,SoftReqs,HardReqs,sysopt);

C = setBlockValue(C0,T);

Convert Distillation Column Problem for Tuning With systune

Set up the following control system for tuning with looptune. Then convert the setup
to a systune problem and examine the results. These results reflect the structure
of the control system model that looptune tunes. The results also reflect the tuning
requirements implicitly enforced when tuning with looptune.
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For this example, the 2-by-2 plant G is represented by:

The fixed-structure controller, C, includes three components: the 2-by-2 decoupling
matrix D and two PI controllers PI_L and PI_V. The signals r, y, and e are vector-valued
signals of dimension 2.

Build a numeric model that represents the plant and a tunable model that represents
the controller. Name all inputs and outputs as in the diagram, so that looptune and
looptuneSetup know how to interconnect the plant and controller via the control and
measurement signals.

s = tf('s');

G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];

G.InputName = {'qL','qV'};

G.OutputName = {'y'};

D = ltiblock.gain('Decoupler',eye(2));

D.InputName = 'e';

D.OutputName = {'pL','pV'};

PI_L = ltiblock.pid('PI_L','pi');

PI_L.InputName = 'pL';

PI_L.OutputName = 'qL';

PI_V = ltiblock.pid('PI_V','pi');

PI_V.InputName = 'pV';

PI_V.OutputName = 'qV';

sum1 = sumblk('e = r - y',2);

C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});

This system is now ready for tuning with looptune, using tuning goals that you specify.
For example, specify a target bandwidth range. Create a tuning requirement that
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imposes reference tracking in both channels of the system with a response time of 15 s,
and a disturbance rejection requirement.

wc = [0.1,0.5];

TR = TuningGoal.Tracking('r','y',15,0.001,1);

DR = TuningGoal.Rejection({'qL','qV'},1/s);

DR.Focus = [0 0.1];

[G,C,gam,info] = looptune(G,C0,wc,TR,DR);

Final: Peak gain = 1, Iterations = 52

Achieved target gain value TargetGain=1.

looptune successfully tunes the system to these requirements. However, you might
want to switch to systune to take advantage of additional flexibility in configuring your
problem. For example, instead of tuning both channels to a loop bandwidth inside wc,
you might want to specify different crossover frequencies for each loop. Or, you might
want to enforce the tuning requirements TR and DR as hard constraints, and add other
requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(G,C0,wc,TR,DR);

This command returns a set of arguments you can provide to systune for equivalent
results to tuning with looptune. In other words, the following command is equivalent to
the previous looptune command.

[T,fsoft,ghard,info] = systune(T0,SoftReqs,HardReqs,sysopt);

Final: Peak gain = 1, Iterations = 52

Achieved target gain value TargetGain=1.

Examine the arguments returned by looptuneSetup.

T0

T0 =

  Generalized continuous-time state-space model with 0 outputs, 2 inputs, 4 states, and the following blocks:

    APU_: Analysis point, 2 channels, 1 occurrences.

    APY_: Analysis point, 2 channels, 1 occurrences.

    Decoupler: Parametric 2x2 gain, 1 occurrences.
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    PI_L: Parametric PID controller, 1 occurrences.

    PI_V: Parametric PID controller, 1 occurrences.

Type "ss(T0)" to see the current value, "get(T0)" to see all properties, and "T0.Blocks" to interact with the blocks.

The software constructs the closed-loop control system for systune by connecting the
plant and controller at their control and measurement signals, and inserting a two-
channel AnalysisPoint block at each of the connection locations, as illustrated in the
following diagram.

When tuning the control system of this example with looptune, all requirements are
treated as soft requirements. Therefore, HardReqs is empty. SoftReqs is an array of
TuningGoal requirements. These requirements together enforce the bandwidth and
margins of the looptune command, plus the additional requirements that you specified.

SoftReqs

SoftReqs = 

  5x1 heterogeneous SystemLevel (LoopShape, Tracking, Rejection, ...) array with properties:

    Models

    Openings

    Name

Examine the first entry in SoftReqs.
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SoftReqs(1)

ans = 

  LoopShape with properties:

       LoopGain: [1x1 zpk]

       CrossTol: 0.3495

          Focus: [0 Inf]

      Stabilize: 1

    LoopScaling: 'on'

       Location: {2x1 cell}

         Models: NaN

       Openings: {0x1 cell}

           Name: 'Open loop CG'

looptuneSetup expresses the target crossover frequency range wc as a
TuningGoal.LoopShape requirement. This requirement constrains the open-loop gain
profile to the loop shape stored in the LoopGain property, with a crossover frequency and
crossover tolerance (CrossTol) determined by wc. Examine this loop shape.

viewSpec(SoftReqs(1))
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The target crossover is expressed as an integrator gain profile with a crossover between
0.1 and 0.5 rad/s, as specified by wc. If you want to specify a different loop shape, you can
alter this TuningGoal.LoopShape requirement before providing it to systune.

looptune also tunes to default stability margins that you can change using
looptuneOptions. For systune, stability margins are specified using
TuningGoal.Margins requirements. Here, looptuneSetup has expressed the default
stability margins of looptune as soft TuningGoal.Margins requirements. For
example, examine the fourth entry in SoftReqs.

SoftReqs(4)
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ans = 

  Margins with properties:

      GainMargin: 7.6000

     PhaseMargin: 45

    ScalingOrder: 0

           Focus: [0 Inf]

        Location: {2x1 cell}

          Models: NaN

        Openings: {0x1 cell}

            Name: 'Margins at plant inputs'

The last entry in SoftReqs is a similar TuningGoal.Margins requirement
constraining the margins at the plant outputs. looptune enforces these margins as soft
requirements. If you want to convert them to hard constraints, pass them to systune in
the input vector HardReqs instead of the input vector SoftReqs.

Input Arguments

looptuneInputs — Plant, controller, and requirement inputs to looptune
valid looptune input sequence

Plant, controller, and requirement inputs to looptune, specified as a valid looptune
input sequence. For more information about the arguments in a valid looptune input
sequence, see the looptune reference page.

Output Arguments

T0 — Closed-loop control system model
generalized state-space model

Closed-loop control system model for tuning with systune, returned as a generalized
state-space genss model. To compute T0, the plant, G0, and the controller, C0, are
combined in the feedback configuration of the following illustration.



 looptuneSetup

2-245

G0

C0

T0

xx

The connections between C0 and G0 are determined by matching signals using the
InputName and OutputName properties of the two models. In general, the signal lines
in the diagram can represent vector-valued signals. AnalysisPoint blocks, indicated
by X in the diagram, are inserted between the controller and the plant. This allows
definition of open-loop and closed-loop requirements on signals injected or measured
at the plant inputs or outputs. For example, the bandwidth wc is converted into a
TuningGoal.LoopShape requirement that imposes the desired crossover on the open-
loop signal measured at the plant input.

For more information on the structure of closed-loop control system models for tuning
with systune, see the systune reference page.

SoftReqs — Soft tuning requirements
vector of TuningGoal requirement objects

Soft tuning requirements for tuning with systune, specified as a vector of TuningGoal
requirement objects.

looptune expresses most of its implicit tuning requirements as soft tuning
requirements. For example, a specified target loop bandwidth is expressed as a
TuningGoal.LoopShape requirement with integral gain profile and crossover at the
target frequency. Additionally, looptune treats all of the explicit requirements you
specify (Req1,...ReqN) as soft requirements. SoftReqs contains all of these tuning
requirements.

HardReqs — Hard tuning requirements
vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning with systune, specified as a vector of
TuningGoal requirement objects.
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Because looptune treats most tuning requirements as soft requirements, HardReqs
is usually empty. However, if you change the default MaxFrequency option of
the looptuneOptions set, loopopt, then this requirement appears as a hard
TuningGoal.Poles constraint.

sysopt — Algorithm options for systune tuning
systuneOptions options set

Algorithm options for systune tuning, specified as a systuneOptions options set.

Some of the options in the looptuneOptions set, loopopt, are expressed as hard or
soft requirements that are returned in HardReqs and SoftReqs. Other options correspond
to options in the systtuneOptions set.

Alternatives

When tuning Simulink using an slTuner, interface, convert a looptune problem to
systune using looptuneSetup for slTuner.

See Also
genss | looptune | looptuneOptions | looptuneSetup (for slTuner) |
slTuner | systune | systuneOptions
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loopview
Graphically analyze MIMO feedback loops

Syntax

loopview(G,C)

loopview(G,C,info)

Description

loopview(G,C) plots characteristics of the following positive-feedback, multi-input,
multi-output (MIMO) feedback loop with plant G and controller C.

G

C

u y

Use loopview to analyze the performance of a tuned control system you obtain using
looptune.

Note: If you are tuning a Simulink model with looptune through an slTuner interface,
analyze the performance of your control system using loopview for slTuner (requires
Simulink Control Design).

loopview plots the singular values of:

• Open-loop frequency responses G*C and C*G
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• Sensitivity function S = inv(1-G*C) and complementary sensitivity T = 1-S
• Maximum (target), actual (tuned), and normalized MIMO stability margins.

loopview plots the multi-loop disk margin (see loopmargin). Use this plot to verify
that the stability margins of the tuned system do not significantly exceed the target
value.

For more information about singular values, see sigma.

loopview(G,C,info) uses the info structure returned by looptune. This syntax
also plots the target and tuned values of tuning constraints imposed on the system.
Additional plots include:

• Singular values of the maximum allowed S and T. The curve marked S/T Max shows
the maximum allowed S on the low-frequency side of the plot, and the maximum
allowed T on the high-frequency side. These curves are the constraints that looptune
imposes on S and T to enforce the target crossover range wc.

• Target and tuned values of constraints imposed by any tuning goal requirements you
used with looptune.

Use loopview with the info structure to assist in troubleshooting when tuning fails to
meet all requirements.

Input Arguments

G

Numeric LTI model or tunable genss model representing the plant in a control
system. The plant is the portion of a control system whose outputs are sensor signals
(measurements), and whose inputs are actuator signals (controls).

You can obtain G as an output argument from looptune when you tune your control
system.

C

genss model representing the controller in a control system. The controller is the
portion of your control system that receives sensor signals (measurements) as inputs and
produces actuator signals (controls) as outputs.
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You can obtain C as an output argument from looptune when you tune your control
system.

info

info structure returned by looptune during control system tuning.

Examples

Examine Performance of Tuned Controller

Tune a control system, and use loopview to examine the performance of the tuned
controller.

s = tf('s');

G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];

G.InputName = {'qL','qV'};

G.OutputName = 'y';

D = ltiblock.gain('Decoupler',eye(2));

PI_L = ltiblock.pid('PI_L','pi');

PI_L.OutputName = 'qL';

PI_V = ltiblock.pid('PI_V','pi');

PI_V.OutputName = 'qV';

sum = sumblk('e = r - y',2);

C0 = (blkdiag(PI_L,PI_V)*D)*sum;

wc = [0.1,1];

options = looptuneOptions('RandomStart',5);

[G,C,gam,info] = looptune(-G,C0,wc,options);

loopview(G,C,info)

Final: Peak gain = 0.859, Iterations = 25

Achieved target gain value TargetGain=1.
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The first plot shows that the open-loop gain crossovers fall close to the specified interval
[0.1,1]. This plot also includes the tuned values of the sensitivity function S = inv(1-
G*C) and complementary sensitivity T = 1-S. These curves reflect the constraints that
looptune imposes on S and T to enforce the target crossover range wc.

The second and third plots show that the MIMO stability margins of the tuned system
fall well within the target range.

• “Tune MIMO Control System for Specified Bandwidth”
• “Decoupling Controller for a Distillation Column”
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Alternatives

For analyzing Simulink models tuned with looptune through an slTuner interface, use
loopview for slTuner (requires Simulink Control Design).

See Also
looptune (for slTuner) | looptune | slTuner | loopview (for slTuner)
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ltiarray2uss

Compute uncertain system bounding given LTI ss array

Note ltiarray2uss will be removed in a future release. Use ucover instead.

Syntax

usys = ltiarray2uss(P,Parray,ord)

[usys,wt] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'InputMult')

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'OutputMult')

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'Additive')

Description

The command ltiarray2uss, calculates an uncertain system usys with nominal value
P, and whose range of behavior includes the given array of systems, Parray.

usys = ltiarray2uss(P,Parray,ord), usys is formulated as an input
multiplicative uncertainty model,

usys = P*(I + wt*ultidyn('IMult',[size(P,2) size(P,2)])), where wt
is a stable scalar system, whose magnitude overbounds the relative difference, (P -
Parray)/P. The state order of the weighting function used to bound the multiplicative
difference between P and Parray is ord. Both P and Parray must be in the classes ss/
tf/zpk/frd. If P is an frd then usys will be a ufrd object, otherwise usys will be a
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uss object. The ultidyn atom is named based on the variable name of Parray in the
calling workspace.

[usys,wt] = ltiarray2uss(P,Parray,ord), returns the weight wt used to bound
the infinity norm of ((P - Parray)/P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'OutputMult'), uses multiplicative
uncertainty at the plant output (as opposed to input multiplicative uncertainty). The
formula for usys is

usys = (I + wt*ultidyn('Name',[size(P,1) size(P,1)])*P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'Additive'), uses additive
uncertainty.

usys = P + wt*ultidyn('Name',[size(P,1) size(P,2)]). wt is a frequency
domain overbound of the infinity norm of (Parray - P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'InputMult'), uses multiplicative
uncertainty at the plant input (this is the default). The formula for usys is usys =
P*(I + wt*ultidyn('Name',[size(P,2) size(P,2)])) .

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,type) returns the norm of
the difference (absolute difference for additive, and relative difference for multiplicative
uncertainty) between the nominal model P and Parray. wt satisfies diffdata(w_i) <
|wt(w_i)| at all frequency points.

Examples

Uncertain System Bounding an LTI Array

Consider a third order transfer function with an uncertain gain, filter time constant and
a lightly damped flexible mode. This model is used to represent a physical system from
which frequency response data is acquired.

gain = ureal('gain',10,'Perc',20);

tau = ureal('tau',.6,'Range',[.42 .9]);

wn = 40;

zeta = 0.1;

usys = tf(gain,[tau 1])*tf(wn^2,[1 2*zeta*wn wn^2]);
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sysnom = usys.NominalValue;

parray = usample(usys,30);

om = logspace(-1,2,80);

parrayg = frd(parray,om);

bode(parrayg)

The frequency response data in parray represents 30 experiments performed on the
system. The command ltiarray2uss is used to generate an uncertain model, umod,
based on the frequency response data. Initially an input multiplicative uncertain model
is used to characterize the collection of 30 frequency responses. First and second order
input multiplicative uncertainty weight are calculated from the data.

[umodIn1,wtIn1,diffdataIn] = ltiarray2uss(sysnom,parrayg,1);
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[umodIn2,wtIn2,diffdataIn] = ltiarray2uss(sysnom,parrayg,2);

bodemag(wtIn1,'b-',wtIn2,'g+',diffdataIn,'r.',om)

title('Input Multiplicative Uncertainty Model Using ltiarray2uss')

legend('1st order','2nd order','difference','Location','SouthEast')

Alternatively, an additive uncertain model is used to characterize the collection of 30
frequency responses.

[umodAdd1,wtAdd1,diffdataAdd] = ltiarray2uss(sysnom,parrayg,1,'Additive');

[umodAdd2,wtAdd2,diffdataAdd] = ltiarray2uss(sysnom,parrayg,2,'Additive');

bodemag(wtAdd1,'b-',wtAdd2,'g+',diffdataAdd,'r.',om)

title('Additive Uncertainty Model Using ltiarray2uss')

legend('1st order','2nd order','difference')
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• First-Cut Robust Design

See Also
fitmagfrd | uss | ultidyn
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ltrsyn
LQG loop transfer-function recovery (LTR) control synthesis

Syntax
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,OPT)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W,OPT)

Description

[K,SVL,W1] = ltrsyn(G,F,XI,TH,RHO) computes a reconstructed-state output-
feedback controller K for LTI plant G so that K*G asymptotically recovers plant-input
full-state feedback loop transfer function L(s) = F(Is–A)–1B+D; that is, at any frequency
w>0, max(sigma(K*G-L, w))→0 as ρ→ ∞, where L= ss(A,B,F,D) is the LTI full-
state feedback loop transfer function.

[K,SVL,W1] = ltrsyn(G,F1,Q,R,RHO,'OUTPUT') computes the solution to the
`dual' problem of filter loop recovery for LTI plant G where F is a Kalman filter gain
matrix. In this case, the recovery is at the plant output, and max(sigma(G*K-L,
w))→0 as ρ→∞, where L1 denotes the LTI filter loop feedback loop transfer function L1=
ss(A,F,C,D).

Only the LTI controller K for the final value RHO(end)is returned.

Inputs  

G LTI plant
F LQ full-state-feedback gain matrix
XI plant noise intensity,

or, if OPT='OUTPUT' state-cost matrix XI=Q,
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Inputs  

THETA sensor noise intensity

or, if OPT='OUTPUT' control-cost matrix THETA=R,
RHO vector containing a set of recovery gains
W (optional) vector of frequencies (to be used for plots); if input W is not

supplied, then a reasonable default is used

Outputs  

K K(s) — LTI LTR (loop-transfer-recovery) output-feedback, for the last
element of RHO (i.e., RHO(end))

SVL sigma plot data for the recovered loop transfer function if G is MIMO
or, for SISO G only, Nyquist loci SVL = [re(1:nr) im(1:nr)]

W1 frequencies for SVL plots, same as W when present

Examples

s=tf('s');G=ss(1e4/((s+1)*(s+10)*(s+100)));[A,B,C,D]=ssdata(G);

F=lqr(A,B,C'*C,eye(size(B,2)));

L=ss(A,B,F,0*F*B);

XI=100*C'*C; THETA=eye(size(C,1));

RHO=[1e3,1e6,1e9,1e12];W=logspace(-2,2);

nyquist(L,'k-.');hold;

[K,SVL,W1]=ltrsyn(G,F,XI,THETA,RHO,W);

See also ltrdemo

Limitations

The ltrsyn procedure may fail for non-minimum phase plants. For full-state LTR
(default OPT='INPUT'), the plant should not have fewer outputs than inputs. Conversely
for filter LTR (when OPT='OUTPUT'), the plant should not have fewer inputs than
outputs. The plant must be strictly proper, i.e., the D-matrix of the plant should be all
zeros. ltrsyn is only for continuous time plants (Ts==0)
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More About

Algorithms

For each value in the vector RHO, [K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO)
computes the full-state-feedback (default OPT='INPUT') LTR controller

K s K Is A BK K C K DK Kc c f f c f( ) ( )= − + + −





−1

where Kc = F and Kf = lqr(A',C',XI+RHO(i)*B*B',THETA). The “fictitious noise”
term RHO(i)*B*B' results in loop-transfer recovery as RHO(i) → ∞. The Kalman
filter gain is K Cf

T= ∑ −Θ 1  where Σ satisfies the Kalman filter Riccati equation

0
1= ∑ + ∑ −∑ ∑ + +−

A A C C BB
T T TΘ Ξ ρ . See [1] for further details.

Similarly for the 'dual' problem of filter loop recovery case, [K,SVL,W1] =
ltrsyn(G,F,Q,R,RHO,'OUTPUT') computes a filter loop recovery controller of the
same form, but with Kf = F is being the input filter gain matrix and the control gain
matrix Kc computed as Kc = lqr(A,B,Q+RHO(i)*C'*C,R).

Example of LQG/LTR at Plant Output.
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References

[1] Doyle, J., and G. Stein, “Multivariable Feedback Design: Concepts for a Classical/
Modern Synthesis,” IEEE Trans. on Automat. Contr., AC-26, pp. 4-16, 1981.

See Also
h2syn | hinfsyn | ncfsyn | lqg | loopsyn
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makeweight
First-order weighting function with specified DC gain, crossover frequency, and high-
frequency gain

makeweight is a convenient way to specify loop shapes, target gain profiles, or weighting
functions for applications such as controller synthesis and control system tuning.

Syntax

W = makeweight(dcgain,wc,hfgain)

W = makeweight(dcgain,wc,hfgain,Ts)

Description

W = makeweight(dcgain,wc,hfgain) creates a stable, first-order, continuous-
time state-space model whose frequency response has the specified low-frequency gain,
crossover frequency, and high-frequency gain. In other words, the response of W satisfies:

W j

W j

W j

◊( ) =

◊( ) =

◊•( ) =

0

1

dcgain

wc

hfgain.

The low-frequency gain and the high-frequency gain must satisfy either |dcgain| < 1 <
|hfgain| or |hfgain| < 1 < |dcgain|.

W = makeweight(dcgain,wc,hfgain,Ts) creates a stable, first-order, discrete-time
state-space model with the specified sample time. The response of W satisfies:

W e

W e

W e

j

j

j

◊ ◊

◊ ◊

( ) =

( ) =

( ) =

0

1
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wc Ts
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As in the continuous-time case, the low-frequency gain and the high-frequency gain
must satisfy either |dcgain| < 1 < |hfgain| or |hfgain| < 1 < |dcgain|. In addition, the
crossover frequency must satisfy wc*Ts < π.

Examples

Continuous-Time Weighting Functions

Create continuous-time weighting functions by specifying low-frequency gain, high-
frequency gain, and crossover frequencies.

Create a weighting function with gain of 40 dB at low frequency, rolling off to -20 dB at
high frequency. Specify a crossover frequency of 0.4 rad/s.

Wl = makeweight(100,.4,.10);

Create a weighting function with gain of -10 dB at low frequency, rising to 40 dB at high
frequency. Specify a crossover frequency of 20 rad/s.

Wh = makeweight(0.316,20,100);

Plot the magnitudes of the weighting functions to confirm that they meet the response
specifications.

bodemag(Wl,Wh)
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Weighting Functions With Roll-Off

Create a gain profile that rolls off at high frequency without flattening. Specify a gain of
40 dB at low frequency and a crossover frequency of 10 rad/s.

W = makeweight(100,10,0);

Specifying a high-frequency gain of 0 ensures that the frequency response rolls off at high
frequencies without leveling off.

Plot the gain profile to confirm the shape.

bodemag(W)
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Discrete-Time Weighting Functions

Create discrete-time weighting functions by specifying low-frequency gain, high-
frequency gain, crossover frequencies, and sample time.

Create a weighting function with gain of 40 dB at low frequency, rolling off to -20 dB at
high frequency. Specify a crossover frequency of 0.4 rad/s and a sample time of 0.1 s.

Wl = makeweight(100,.4,.10,0.1);

Create a weighting function with gain of -10 dB at low frequency, rising to 40 dB at high
frequency. Specify a crossover frequency of 2 rad/s and a sample time of 0.1 s.

Wh = makeweight(0.316,2,100,0.1);
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Plot the magnitudes of the weighting functions to confirm that they meet the response
specifications.

bodemag(Wl,Wh)

The high-frequency leveling of Wh is somewhat distorted due to the proximity of its
crossover frequency to the Nyquist frequency.

Input Arguments

dcgain — Low-frequency gain
real scalar
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Low-frequency gain of the weighting function, specified as a real scalar value. The gain
is expressed in absolute units. For example, to specify a low-frequency gain of 20 dB, set
dcgain = 10.

The low-frequency gain and the high-frequency gain must satisfy either |dcgain| < 1 <
|hfgain| or |hfgain| < 1 < |dcgain|.

wc — Crossover frequency
positive scalar

Crossover frequency of the weighting function in radians/second, specified as a positive
scalar value.

For discrete-time weighting functions, the crossover frequency must satisfy wc*Ts<π.

hfgain — High-frequency gain
real scalar

High-frequency gain of the weighting function, specified as a real scalar value. The gain
is expressed in absolute units. For example, to specify a high-frequency gain of –20 dB,
set dcgain = 0.1.

The low-frequency gain and the high-frequency gain must satisfy either |dcgain| < 1 <
|hfgain| or |hfgain| < 1 < |dcgain|.

Ts — sample time
positive scalar | –1

sample time of discrete-time weighting function, specified as a positive scalar value or
as –1. A positive value sets the sample time in seconds. A specified sample time must
satisfy wc*Ts<π. The value –1 creates a discrete-time state-space model with unspecified
sample time.

Output Arguments

W — Weighting function
state-space model

Weighting function, returned as a state-space (ss) model. For continuous-time weighting
functions, the response of W satisfies:
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W j

W j

W j
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For discrete-time weighting functions, the response of W satisfies:
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See Also
TuningGoal.LoopShape | TuningGoal.WeightedGain |
TuningGoal.WeightedVariance | dksyn | hinfstruct | hinfsyn | ss
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matnbr
Number of matrix variables in system of LMIs

Syntax
K = matnbr(lmisys)

Description

matnbr returns the number K of matrix variables in the LMI problem described by
lmisys.

See Also
decnbr | lmiinfo | decinfo
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mat2dec
Extract vector of decision variables from matrix variable values

Syntax
decvec = mat2dec(lmisys,X1,X2,X3,...)

Description

Given an LMI system lmisys with matrix variables X1, . . ., XK and given values
X1,...,Xk of X1, . . ., XK, mat2dec returns the corresponding value decvec of the vector
of decision variables. Recall that the decision variables are the independent entries of the
matrices X1, . . ., XK and constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp. Given
an initial guess for X1, . . ., XK, mat2dec forms the corresponding vector of decision
variables xinit.

An error occurs if the dimensions and structure of X1,...,Xk are inconsistent with the
description of X1, . . ., XK in lmisys.

Examples

Consider an LMI system with two matrix variables X and Y such that

• X is a symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block.
• Y is a 2-by-3 rectangular matrix.

Particular instances of X and Y are

X Y0 0

1 3 0 0

3 1 0 0

0 0 5 0

0 0 0 5

1 2 3

4 5 6
=

−


















=








,    
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and the corresponding vector of decision variables is given by

decv = mat2dec(lmisys,X0,Y0)

decv'

ans = 

        1     3     -1     5     1     2     3     4     5     6

Note that decv is of length 10 since Y has 6 free entries while X has 4 independent
entries due to its structure. Use decinfo to obtain more information about the decision
variable distribution in X and Y.

See Also
dec2mat | decnbr | decinfo



 mincx

2-271

mincx
Minimize linear objective under LMI constraints

Syntax

[copt,xopt] = mincx(lmisys,c,options,xinit,target)

Description

The function mincx solves the convex program

minimize  subject to c x N L x N M R x M
T T T( ) ( )≤

where x denotes the vector of scalar decision variables.

The system of LMIs is described by lmisys. The vector c must be of the same length as
x. This length corresponds to the number of decision variables returned by the function
decnbr. For linear objectives expressed in terms of the matrix variables, the adequate c
vector is easily derived with defcx.

The function mincx returns the global minimum copt for the objective cTx, as well as the
minimizing value xopt of the vector of decision variables. The corresponding values of
the matrix variables is derived from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of the
minimizer xopt. It is ignored when infeasible, but may speed up computations otherwise.
Note that xinit should be of the same length as c. As for target, it sets some target
for the objective value. The code terminates as soon as this target is achieved, that is, as
soon as some feasible x such that cTx ≤ target is found. Set options to [] to use xinit
and target with the default options.

Control Parameters

The optional argument options gives access to certain control parameters of the
optimization code. In mincx, this is a five-entry vector organized as follows:
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• options(1) sets the desired relative accuracy on the optimal value lopt (default =
10–2).

• options(2) sets the maximum number of iterations allowed to be performed by the
optimization procedure (100 by default).

• options(3) sets the feasibility radius. Its purpose and usage are as for feasp.
• options(4) helps speed up termination. If set to an integer value J > 0, the code

terminates when the objective cTx has not decreased by more than the desired relative
accuracy during the last J iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure.
Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter
to its default value. See feasp for more detail.

Tip for Speed-Up
In LMI optimization, the computational overhead per iteration mostly comes from
solving a least-squares problem of the form

min
x

Ax b−

where x is the vector of decision variables. Two methods are used to solve this problem:
Cholesky factorization of ATA (default), and QR factorization of A when the normal
equation becomes ill conditioned (when close to the solution typically). The message

* switching to QR

is displayed when the solver has to switch to the QR mode.

Since QR factorization is incrementally more expensive in most problems, it is sometimes
desirable to prevent switching to QR. This is done by setting options(4) = 1. While
not guaranteed to produce the optimal value, this generally achieves a good trade-off
between speed and accuracy.

Memory Problems
QR-based linear algebra (see above) is not only expensive in terms of computational
overhead, but also in terms of memory requirement. As a result, the amount of memory
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required by QR may exceed your swap space for large problems with numerous LMI
constraints. In such case, MATLAB issues the error

??? Error using ==> pds 

Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no
additional swap space is available, set options(4) = 1. This will prevent switching to
QR and mincx will terminate when Cholesky fails due to numerical instabilities.

References

The solver mincx implements Nesterov and Nemirovski's Projective Method as described
in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix
Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.

See Also
defcx | mincx | dec2mat | decnbr | feasp | gevp
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mixsyn

H∞ mixed-sensitivity synthesis method for robust control loopshaping design

Syntax

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3)

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)

Description

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3) computes a controller K that minimizes the
H∞ norm of the closed-loop transfer function the weighted mixed sensitivity

T
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where S and T are called the sensitivity and complementary sensitivity, respectively and
S, R and T are given by
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Closed-loop transfer function Ty1u1 for mixed sensitivity mixsyn.

The returned values of S, R, and T satisfy the following loop shaping inequalities:

σ ω γ σ ω

σ ω γ σ ω

σ ω γ

S j W j

R j W j

T j

( ) ( )

( ) ( )

( )

( ) ≤ ( )
( ) ≤ ( )
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1
1

2
1

σσ ωW j3
1−( )( )

where γ = GAM. Thus, W1, W3 determine the shapes of sensitivity S and complementary
sensitivity T. Typically, you would choose W1 to be small inside the desired control
bandwidth to achieve good disturbance attenuation (i.e., performance), and choose W3 to
be small outside the control bandwidth, which helps to ensure good stability margin (i.e.,
robustness).

For dimensional compatibility, each of the three weights W1, W2 and W3 must be either
empty, scalar (SISO) or have respective input dimensions NY, NU, and NY where G is
NY-by-NU. If one of the weights is not needed, you may simply assign an empty matrix
[]; e.g., P = AUGW(G,W1,[],W3) is SYS but without the second row (without the row
containing W2).
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Examples

Loop Shaping with mixsyn

This example shows the use of mixsyn for sensitivity and complementary sensitivity loop
shaping.

s = zpk('s');

G = (s-1)/(s+1)^2;

W1 = 0.1*(s+100)/(100*s+1);

W2 = 0.1;

[K,CL,GAM] = mixsyn(G,W1,W2,[]);

L = G*K;

S = inv(1+L);

T = 1-S;

sigma(S,'g',T,'r',GAM/W1,'g-.',GAM*G/ss(W2),'r-.')

legend('S','T','GAM/W1','GAM*G/ss(W2)','Location','SouthWest')
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The mixsyn command shapes the singular values of S and T to conform to GAM/W1 and
GAM*G/W2, respectively.

Limitations

The transfer functions G, W1, W2 and W3 must be proper, i.e., bounded as s → ∞ or, in the
discrete-time case, as z → ∞. Additionally, W1, W2 and W3 should be stable. The plant G
should be stabilizable and detectable; else, P will not be stabilizable by any K.
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More About

Algorithms

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...)

is equivalent to

[K,CL,GAM,INFO]=...

    hinfsyn(augw(G,W1,W2,W3),KEY1,VALUE1,KEY2,VALUE2,...).

mixsyn accepts all the same key value pairs as hinfsyn.

See Also
augw | hinfsyn
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mkfilter
Generate Bessel, Butterworth, Chebyshev, or RC filter

Syntax
sys = mkfilter(fc,ord,type)

sys = mkfilter(fc,ord,type,psbndr)

Description

sys = mkfilter(fc,ord,type) returns a single-input, single-output analog low pass
filter sys as an ss object. The cutoff frequency (Hertz) is fc and the filter order is ord, a
positive integer. The string variable type specifies the type of filter and can be one of the
following

String variable Description

'butterw' Butterworth filter
'cheby' Chebyshev filter
'bessel' Bessel filter
'rc' Series of resistor/capacitor filters

The dc gain of each filter (except even-order Chebyshev) is set to unity.

sys = mkfilter(fc,ord,type,psbndr) contains the input argument psbndr that
specifies the Chebyshev passband ripple (in dB). At the cutoff frequency, the magnitude
is -psbndr dB. For even-order Chebyshev filters the DC gain is also -psbndr dB.

Examples

Generate Filters

Generate several different types of filters and compare their frequency responses.

butw = mkfilter(2,4,'butterw');

cheb = mkfilter(4,4,'cheby',0.5);
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rc = mkfilter(1,4,'rc');

bode(butw,'-',cheb,'--',rc,'-.')

legend('Butterworth','Chebyshev','RC filter')

Limitations

The Bessel filters are calculated using the recursive polynomial formula. This is poorly
conditioned for high order filters (order > 8).

See Also
augw
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mktito
Partition LTI system into two-input/two-output system

Syntax
SYS=mktito(SYS,NMEAS,NCONT)

Description

SYS=mktito(SYS,NMEAS,NCONT) adds TITO (two-input/two-output) partitioning to LTI
system SYS, assigning OutputGroup and InputGroup properties such that

Any preexisting OutputGroup or InputGroup properties of SYS are overwritten. TITO
partitioning simplifies syntax for control synthesis functions like hinfsyn and h2syn.

Examples

You can type

P=rss(2,4,5); P=mktito(P,2,2);

disp(P.OutputGroup); disp(P.InputGroup);

to create a 4-by-5 LTI system P with OutputGroup and InputGroup properties

    U1: [1 2 3]
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    U2: [4 5]

    Y1: [1 2]

    Y2: [3 4]

More About

Algorithms

[r,c]=size(SYS);

set(SYS,'InputGroup', struct('U1',1:c-NCONT,'U2',c-NCONT+1:c));

set(SYS,'OutputGroup',struct('Y1',1:r-NMEAS,'Y2',r-NMEAS+1:r));

See Also
augw | hinfsyn | h2syn | sdhinfsyn
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modreal
Modal form realization and projection

Syntax
[G1,G2] = modreal(G,cut)

Description

[G1,G2] = modreal(G,cut) returns a set of state-space LTI objects G1 and G2 in
modal form given a state-space G and the model size of G1, cut.

The modal form realization has its A matrix in block diagonal form with either 1x1 or
2x2 blocks. The real eigenvalues will be put in 1x1 blocks and complex eigenvalues will
be put in 2x2 blocks. These diagonal blocks are ordered in ascending order based on
eigenvalue magnitudes.

The complex eigenvalue a+bj is appearing as 2x2 block

a b

b a−










This table describes input arguments for modreal.

Argument Description

G LTI model to be reduced.
cut (Optional) an integer to split the realization. Without it, a complete

modal form realization is returned

This table lists output arguments.

Argument Description

G1,G2 LTI models in modal form
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G can be stable or unstable. G1 = (A1, B1, C1, D1), G2 = (A2, B2, C2, D2) and D1 = D +
C2(–A2)–1B2 is calculated such that the system DC gain is preserved.

Examples

Given a continuous stable or unstable system, G, the following commands can get a set of
modal form realizations depending on the split index -- cut:

rng(1234,'twister');

G = rss(50,2,2);

[G1,G2] = modreal(G,2); % cut = 2 for two rigid body modes

G1.d = zeros(2,2); % remove the DC gain of the system from G1

sigma(G,G1,G2)

More About

Algorithms

Using a real eigen structure decomposition reig and ordering the eigenvectors in
ascending order according to their eigenvalue magnitudes, we can form a similarity
transformation out of these ordered real eigenvectors such that he resulting systems G1
and/or G2 are in block diagonal modal form.

Note This routine is extremely useful when model has jω-axis singularities, e.g., rigid
body dynamics. It has been incorporated inside Hankel based model reduction routines -
hankelmr, balancmr, bstmr, and schurmr to isolate those jω-axis poles from the actual
model reduction process.

See Also
reduce | balancmr | bstmr | ncfmr | schurmr | hankelmr | hankelsv
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msfsyn

Multi-model/multi-objective state-feedback synthesis

Syntax

[gopt,h2opt,K,Pcl,X] = msfsyn(P,r,obj,region,tol)

Description

Given an LTI plant P with state-space equations

&x Ax B w B u

z C x D w D u

z C x D u

= + +
= + +
= +








∞

1 2

1 11 12

2 2 22

msfsyn computes a state-feedback control u = Kx that

• Maintains the RMS gain (H∞ norm) of the closed-loop transfer function T∞ from w to
z∞ below some prescribed value γ0 > 0

• Maintains the H2 norm of the closed-loop transfer function T2 from w to z2 below some
prescribed value υ0 > 0

• Minimizes an H2/H∞ trade-off criterion of the form

α βT T∞ ∞ +2

2 2

2

• Places the closed-loop poles inside the LMI region specified by region (see lmireg
for the specification of such regions). The default is the open left-half plane.

Set r = size(d22) and obj = [γ0, ν0, α, β] to specify the problem dimensions and the
design parameters γ0, ν0, α, and β. You can perform pure pole placement by setting obj =
[0 0 0 0]. Note also that z∞ or z2 can be empty.
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On output, gopt and h2opt are the guaranteed H∞ and H2 performances, K is the

optimal state-feedback gain, Pcl the closed-loop transfer function from w to 
z

z
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





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2

, and X

the corresponding Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where P is a polytopic
model of the plant:
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In this context, msfsyn seeks a state-feedback gain that robustly enforces the
specifications over the entire polytope of plants. Note that polytopic plants should
be defined with psys and that the closed-loop system Pcl is itself polytopic in such
problems. Affine parameter-dependent plants are also accepted and automatically
converted to polytopic models.

See Also
lmireg | psys
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mussv
Compute bounds on structured singular value (µ)

Syntax
bounds = mussv(M,BlockStructure)

[bounds,muinfo] = mussv(M,BlockStructure)

[bounds,muinfo] = mussv(M,BlockStructure,Options)

[ubound,q] = mussv(M,F,BlockStructure)

[ubound,q] = mussv(M,F,BlockStructure,'s')

Description

bounds = mussv(M,BlockStructure) calculates upper and lower bounds on the
structured singular value, or µ, for a given block structure. M is a double, or frd object.
If M is an N-D array (with N ≥ 3), then the computation is performed pointwise along the
third and higher array dimensions. If M is a frd object, the computations are performed
pointwise in frequency (as well as any array dimensions).

BlockStructure is a matrix specifying the perturbation block structure.
BlockStructure has 2 columns, and as many rows as uncertainty blocks in the
perturbation structure. The i-th row of BlockStructure defines the dimensions of the
i'th perturbation block.

• If BlockStructure(i,:) = [-r 0], then the i-th block is an r-by-r repeated,
diagonal real scalar perturbation;

• if BlockStructure(i,:) = [r 0], then the i-th block is an r-by-r repeated,
diagonal complex scalar perturbation;

• if BlockStructure(i,:) = [r c], then the i-th block is an r-by-c complex full-
block perturbation.

• If BlockStructure is omitted, its default is ones(size(M,1),2), which implies a
perturbation structure of all 1-by-1 complex blocks. In this case, if size(M,1) does
not equal size(M,2), an error results.
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If M is a two-dimensional matrix, then bounds is a 1-by-2 array containing an upper
(first column) and lower (second column) bound of the structured singular value of M.
For all matrices Delta with block-diagonal structure defined by BlockStructure
and with norm less than 1/bounds(1) (upper bound), the matrix I - M*Delta is not
singular. Moreover, there is a matrix DeltaS with block-diagonal structure defined by
BlockStructure and with norm equal to 1/bounds(2) (lower bound), for which the
matrix I - M*DeltaS is singular.

The format used in the 3rd output argument from lftdata is also acceptable for
describing the block structure.

If M is an frd, the computations are always performed pointwise in frequency. The
output argument bounds is a 1-by-2 frd of upper and lower bounds at each frequency.
Note that bounds.Frequency equals M.Frequency.

If M is an N-D array (either double or frd), the upper and lower bounds are computed
pointwise along the 3rd and higher array dimensions (as well as pointwise in frequency,
for frd). For example, suppose that size(M) is r×c×d1×...×dF. Then size(bounds) is
1×2×d1×...×dF. Using single index notation, bounds(1,1,i) is the upper bound for the
structured singular value of M(:,:,i), and bounds(1,2,i) is the lower bound for the
structured singular value of M(:,:,i). Here, any i between 1 and d1·d2...dF (the product
of the dk) would be valid.

bounds = mussv(M,BlockStructure,Options) specifies computation options.
Options is a character string, containing any combination of the following characters:

Option Meaning

'a' Upper bound to greatest accuracy, using LMI solver
'an' Same as 'a', but without automatic prescaling
'd' Display warnings
'f' Fast upper bound (typically not as tight as the default)
'gN' Use gain-based lower bound method multiple times. The value of N

sets the number of times, according to 10+N*10. For example, 'g6'
uses gain-based lower bound 70 times. Larger numbers typically give
better lower bounds.

If all uncertainty blocks described by blk are real, then the default is
'g1'. If at least one uncertainty block is complex, then mussv uses
power iteration lower bound by default.
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Option Meaning

'p' Use power iteration method to compute lower bound. When at least
one of the uncertainty blocks described by blk is complex, then 'p'
is the default lower bound method.

'i' Reinitialize lower bound computation at each new matrix (only
relevant if M is ND array or frd)

'mN' Randomly reinitialize lower bound iteration multiple times. N is an
integer between 1 and 9. For example, 'm7' randomly reinitializes
the lower bound iteration 7 times. Larger numbers typically give
better lower bounds.

'o' Run “old” algorithms, from version 3.1.1 and before. Included to allow
exact replication of earlier calculations.

's' Suppress progress information (silent).
'U' Upper-bound “only” (lower bound uses a fast/cheap algorithm).
'x' Decrease iterations in lower bound computation (faster but not as

tight as default). Use 'U' for an even faster lower bound.

[bounds,muinfo] = mussv(M,BlockStructure) returns muinfo, a structure
containing more detailed information. The information within muinfo must be extracted
using mussvextract. See mussvextract for more details.

Generalized Structured Singular Value

ubound = mussv(M,F,BlockStructure) calculates an upper bound on the
generalized structured singular value (generalized µ) for a given block structure. M is a
double or frd object. M and BlockStructure are as before. F is an additional (double
or frd).

ubound = mussv(M,F,BlockStructure,'s') adds an option to run silently. Other
options are ignored for generalized µ problems.

Note that in generalized structured singular value computations, only an upper
bound is calculated. ubound is an upper bound of the generalized structured singular
value of the pair (M,F), with respect to the block-diagonal uncertainty described by
BlockStructure. Consequently ubound is 1-by-1 (with additional array dependence,
depending on M and F). For all matrices Delta with block-diagonal structure defined
by BlockStructure and norm<1/ubound, the matrix [I-Delta*M;F] is guaranteed
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not to lose column rank. This is verified by the matrix Q, which satisfies mussv(M
+Q*F,BlockStructure,'a')<=ubound.

Examples

See mussvextract for a detailed example of the structured singular value.

A simple example for generalized structured singular value can be done with random
complex matrices, illustrating the relationship between the upper bound for µ and
generalized µ, as well as the fact that the upper bound for generalized µ comes from an
optimized µ upper bound.

M is a complex 5-by-5 matrix and F is a complex 2-by-5 matrix. The block structure
BlockStructure is an uncertain real parameter δ1, an uncertain real parameter δ2, an
uncertain complex parameter δ3 and a twice-repeated uncertain complex parameter δ4.

rng(929,'twister')

M = randn(5,5) + sqrt(-1)*randn(5,5); 

F = randn(2,5) + sqrt(-1)*randn(2,5); 

BlockStructure = [-1 0;-1 0;1 1;2 0]; 

[ubound,Q] = mussv(M,F,BlockStructure); 

bounds = mussv(M,BlockStructure); 

optbounds = mussv(M+Q*F,BlockStructure); 

The quantities optbounds(1) and ubound should be extremely close, and significantly
lower than bounds(1) and bounds(2).

[optbounds(1) ubound] 

ans =

    2.2070    2.1749

[bounds(1)  bounds(2)] 

ans =

    4.4049    4.1960
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More About

Algorithms

The lower bound is computed using a power method, Young and Doyle, 1990, and
Packard et al. 1988, and the upper bound is computed using the balanced/AMI technique,
Young et al., 1992, for computing the upper bound from Fan et al., 1991.

Peter Young and Matt Newlin wrote the original function.

The lower-bound power algorithm is from Young and Doyle, 1990, and Packard et al.
1988.

The upper-bound is an implementation of the bound from Fan et al., 1991, and is
described in detail in Young et al., 1992. In the upper bound computation, the matrix is
first balanced using either a variation of Osborne's method (Osborne, 1960) generalized
to handle repeated scalar and full blocks, or a Perron approach. This generates the
standard upper bound for the associated complex µ problem. The Perron eigenvector
method is based on an idea of Safonov, (Safonov, 1982). It gives the exact computation
of µ for positive matrices with scalar blocks, but is comparable to Osborne on general
matrices. Both the Perron and Osborne methods have been modified to handle repeated
scalar and full blocks. Perron is faster for small matrices but has a growth rate
of n3, compared with less than n2 for Osborne. This is partly due to the MATLAB
implementation, which greatly favors Perron. The default is to use Perron for simple
block structures and Osborne for more complicated block structures. A sequence of
improvements to the upper bound is then made based on various equivalent forms of the
upper bound. A number of descent techniques are used that exploit the structure of the
problem, concluding with general purpose LMI optimization (Boyd et al.), 1993, to obtain
the final answer.

The optimal choice of Q (to minimize the upper bound) in the generalized µ problem is
solved by reformulating the optimization into a semidefinite program (Packard et al.,
1991).
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mussvextract
Extract muinfo structure returned by mussv

Syntax

[VDelta,VSigma,VLmi] = mussvextract(muinfo)

Description

A structured singular value computation of the form

[bounds,muinfo] = mussv(M,BlockStructure) 

returns detailed information in the structure muinfo. mussvextract is used to extract
the compressed information within muinfo into a readable form.

The most general call to mussvextract extracts three usable quantities: VDelta,
VSigma, and VLmi. VDelta is used to verify the lower bound. VSigma is used to verify
the Newlin/Young upper bound and has fields DLeft, DRight, GLeft, GMiddle, and
GRight. VLmi is used to verify the LMI upper bound and has fields Dr, Dc, Grc, and
Gcr. The relation/interpretation of these quantities with the numerical results in bounds
is described below.

Upper Bound Information

The upper bound is based on a proof that det(I - M*Delta) is nonzero for all
block-structured matrices Delta with norm smaller than 1/bounds(1). The Newlin/
Young method consists of finding a scalar β and matrices D and G, consistent with
BlockStructure, such that
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Here DL, DR, GL, GM and GR correspond to the DLeft, DRight, GLeft, GMiddle, and
GRight fields respectively.
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Because some uncertainty blocks and M need not be square, the matrices D and
G have a few different manifestations. In fact, in the formula above, there are a
left and right D and G, as well as a middle G. Any such β is an upper bound of
mussv(M,BlockStructure).

It is true that if BlockStructure consists only of complex blocks, then all G matrices
will be zero, and the expression above simplifies to

σ β( ) .D MD
L R

− ≤1

The LMI method consists of finding a scalar β and matrices D and G, consistent with
BlockStructure, such that

′ − + − ′ ≤M D M D j G M M Gr c cr rcβ2
0( )

is negative semidefinite. Again, D and G have a few different manifestations to
match the row and column dimensions of M. Any such β is an upper bound of
mussv(M,BlockStructure). If BlockStructure consists only of complex blocks, then
all G matrices will be zero, and negative semidefiniteness of M´Dr M-β2Dc is sufficient to
derive an upper bound.

Lower Bound Information

The lower bound of mussv(M,BlockStructure) is based on finding a “small” (hopefully
the smallest) block-structured matrix VDelta that causes det(I - M*VDelta) to equal
0. Equivalently, the matrix M*VDelta has an eigenvalue equal to 1. It will always be
true that the lower bound (bounds(2)) will be the reciprocal of norm(VDelta).

Examples

Suppose M is a 4-by-4 complex matrix. Take the block structure to be two 1-by-1 complex
blocks and one 2-by-2 complex block.

rng(0,'twister')

M = randn(4,4) + sqrt(-1)*randn(4,4); 

BlockStructure = [1 1;1 1;2 2]; 

You can calculate bounds on the structured singular value using the mussv command
and extract the scaling matrices using mussvextract.
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[bounds,muinfo] = mussv(M,BlockStructure); 

[VDelta,VSigma,VLmi] = mussvextract(muinfo); 

You can first verify the Newlin/Young upper bound with the information extracted from
muinfo. The corresponding scalings are Dl and Dr.

Dl = VSigma.DLeft 

Dl =

    1.0000         0         0         0

         0    0.7437         0         0

         0         0    1.0393         0

         0         0         0    1.0393

Dr = VSigma.DRight 

Dr =

    1.0000         0         0         0

         0    0.7437         0         0

         0         0    1.0393         0

         0         0         0    1.0393

[norm(Dl*M/Dr) bounds(1)] 

ans =

    6.2950    6.2950

You can first verify the LMI upper bound with the information extracted from muinfo.
The corresponding scalings are Dr and Dc.

Dr = VLmi.Dr; 

Dc = VLmi.Dc; 

eig(M'*Dr*M - bounds(1)^2*Dc) 

ans =

  -0.0000 - 0.0000i

 -17.7242 - 0.0000i

 -33.8550 + 0.0000i
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 -41.2013 - 0.0000i

Note that VDelta matches the structure defined by BlockStructure, and the norm of
VDelta agrees with the lower bound,

VDelta 

VDelta =

   0.1301 - 0.0922i        0                  0                  0          

        0            -0.0121 - 0.1590i        0                  0          

        0                  0            -0.0496 - 0.0708i   0.1272 - 0.0075i

        0                  0             0.0166 - 0.0163i   0.0076 + 0.0334i

[norm(VDelta) 1/bounds(2)] 

ans =

    0.1595    0.1595

and that M*VDelta has an eigenvalue exactly at 1.

eig(M*VDelta) 

ans =

   1.0000 - 0.0000i

  -0.2501 - 0.1109i

   0.0000 + 0.0000i

  -0.3022 + 0.2535i

Keep the matrix the same, but change BlockStructure to be a 2-by-2 repeated, real
scalar block and two complex 1-by-1 blocks. Run mussv with the 'C' option to tighten
the upper bound.

BlockStructure2 = [-2 0; 1 0; 1 0]; 

[bounds2,muinfo2] = mussv(M,BlockStructure2,'C'); 

You can compare the computed bounds. Note that bounds2 should be smaller than
bounds, because the uncertainty set defined by BlockStructure2 is a proper subset of
that defined by BlockStructure.

[bounds; bounds2] 

ans =
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    6.2950    6.2704

    5.1840    5.1750

You can extract the D, G and Delta from muinfo2 using mussvextract.

[VDelta2,VSigma2,VLmi2] = mussvextract(muinfo2); 

As before, you can first verify the Newlin/Young upper bound with the information
extracted from muinfo. The corresponding scalings are Dl, Dr, Gl, Gm and Gr.

Dl = VSigma2.DLeft; 

Dr = VSigma2.DRight; 

Gl = VSigma2.GLeft; 

Gm = VSigma2.GMiddle; 

Gr = VSigma2.GRight; 

dmd = Dl*M/Dr/bounds2(1) - sqrt(-1)*Gm; 

SL = (eye(4)+Gl*Gl)^-0.25; 

SR = (eye(4)+Gr*Gr)^-0.25; 

norm(SL*dmd*SR) 

ans =

    1.0000

You can first verify the LMI upper bound with the information extracted from muinfo.
The corresponding scalings are Dr, Dc, Grc and Gcr.

Dr = VLmi2.Dr; 

Dc = VLmi2.Dc; 

Grc = VLmi2.Grc; 

Gcr = VLmi2.Gcr; 

eig(M'*Dr*M - bounds(1)^2 *Dc + j*(Gcr*M-M'*Grc)) 

ans =

 -69.9757 + 0.0000i

 -11.2139 - 0.0000i

 -19.2766 - 0.0000i

 -40.2869 - 0.0000i

VDelta2 matches the structure defined by BlockStructure, and the norm of VDelta2
agrees with the lower bound,

VDelta2 
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VDelta2 =

   0.1932                  0                  0                  0          

        0             0.1932                  0                  0          

        0                  0            -0.1781 - 0.0750i        0          

        0                  0                  0             0.0941 + 0.1688i

[norm(VDelta2) 1/bounds2(2)] 

ans =

    0.1932    0.1932

and that M*VDelta2 has an eigenvalue exactly at 1.

eig(M*VDelta2) 

  ans =

 1.0000 + 0.0000i

  -0.4328 + 0.1586i

   0.1220 - 0.2648i

  -0.3688 - 0.3219i

See Also
mussv
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ncfmargin

Calculate normalized coprime stability margin of plant-controller feedback loop

Syntax

[marg,freq] = ncfmargin(P,C)

[marg,freq] = ncfmargin(P,C,sign)

[marg,freq] = ncfmargin(P,C,sign,tol)

Description

[marg,freq] = ncfmargin(P,C) returns the normalized coprime stability margin
(also called the gap metric stability margin) of the multivariable feedback loop consisting
of a controller,  C, in negative feedback with a plant, P. This margin, marg, is achieved at
the frequency freq. The normalized coprime stability margin is defined as:

I

C
I PC P I

È
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Í

˘

˚
˙ - [ ]-

•

-

( ) .
1

1

The calculation assumes the feedback structure of the following diagram:

−

C P
+

The normalized coprime robust stability margin is an indication of robustness to
unstructured perturbations. The value of the margin lies between 0 and 1. Values greater
than 0.3 generally indicate good robustness margins.

[marg,freq] = ncfmargin(P,C,sign) specifies the sign of the feedback connection
assumed for the margin calculation. The default value, sign = -1, specifies negative
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feedback. Setting sign = +1 assumes a positive feedback connection for the margin
calculation, as in the following diagram:

+

C P
+

[marg,freq] = ncfmargin(P,C,sign,tol) calculates the normalized coprime factor
metric with the specified relative accuracy. tol is a scalar value between 10–5 and 10–2.
The default value is tol = 0.001 (0.1% accuracy).

Examples

Consider an unstable first-order plant, p, stabilized by high-gain and low-gain
controllers, cL and cH.

p = tf(4,[1 -0.001]);  

cL = 1;    

cH = 10;   

Compute the stability margin of the closed-loop system with the low-gain controller.

[margL,~] = ncfmargin(p,cL)

margL =

    0.7069

Similarly, compute the stability margin of the closed-loop system with the high-gain
controller.

[margH,~] = ncfmargin(p,cH)

margH =

    0.0995

The closed-loop systems with low-gain and high-gain controllers have normalized
coprime stability margins of about 0.71 and 0.1, respectively. This result indicates
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that the closed-loop system with low-gain controller is more robust to unstructured
perturbations than the system with the high-gain controller.

To observe this difference in robustness, construct an uncertain plant, punc, that has an
additional 11% unmodeled dynamics compared to the nominal plant.

punc = p + ultidyn('uncstruc',[1 1],'Bound',0.11); 

Calculate the robust stability of the closed-loop systems formed by the uncertain plant
and each controller.

[stabmargL,duL,reportL] = robuststab(feedback(punc,cL));

reportL

[stabmargH,duH,reportH] = robuststab(feedback(punc,cH));

reportH

reportL =

Uncertain system is robustly stable to modeled uncertainty.                                  

 -- It can tolerate up to 909% of the modeled uncertainty.                                   

 -- A destabilizing combination of 909% of the modeled uncertainty was found.                

 -- This combination causes an instability at 2e+03 rad/seconds.                             

 -- Sensitivity with respect to the uncertain element is:                                    

     'uncstruc' is 100%.  Increasing 'uncstruc' by 25% leads to a 25% decrease in the margin.

reportH =

Uncertain system is not robustly stable to modeled uncertainty.                              

 -- It can tolerate up to 90.9% of the modeled uncertainty.                                  

 -- A destabilizing combination of 90.9% of the modeled uncertainty was found.               

 -- This combination causes an instability at 2e+04 rad/seconds.                             

 -- Sensitivity with respect to the uncertain element is:                                    

     'uncstruc' is 100%.  Increasing 'uncstruc' by 25% leads to a 25% decrease in the margin.

As expected, the robust stability analysis shows that the closed-loop system with low-
gain controller is more robustly stable in the presence of the unmodeled LTI dynamics. In
fact, this closed-loop system can tolerate 909% (or 9.09*11%) of the unmodeled dynamics.
In contrast, closed-loop system with the high-gain controller is not robustly stable. That
closed-loop system can only tolerate 90.9% (or 0.909*11%) of the unmodeled dynamics.

More About

Algorithms

The computation of the normalized coprime stability margin amounts to solving 2-block
H∞ problems. [1] The function, ncfmargin, is based on [2].
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ncfmr
Balanced model truncation for normalized coprime factors

Syntax
GRED = ncfmr(G)

GRED = ncfmr(G,order)

[GRED,redinfo] = ncfmr(G,key1,value1,...)

[GRED,redinfo] = ncfmr(G,order,key1,value1,...)

Description
ncfmr returns a reduced order model GRED formed by a set of balanced normalized
coprime factors and a struct array redinfo containing the left and right coprime factors of
G and their coprime Hankel singular values.

Hankel singular values of coprime factors of such a stable system indicate the respective
“state energy” of the system. Hence, reduced order can be directly determined by
examining the system Hankel SV's.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

The left and right normalized coprime factors are defined as [1]

•
Left Coprime Factorization: G M s N sl l= −1

( ) ( )

• Right Coprime Factorization: G N s M sr r= −
( ) ( )

1

where there exist stable Ur(s), Vr(s), Ul(s) and Vl(s) such that

U N V M I

N U M V I

r r r r

l l l l

+ =
+ =

The left/right coprime factors are stable, hence implies Mr(s) should contain as RHP-
zeros all the RHP-poles of G(s). The comprimeness also implies that there should be no
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common RHP-zeros in Nr(s) and Mr(s), i.e., when forming G N s M sr r= −
( ) ( )

1 , there should
be no pole-zero cancellations.

This table describes input arguments for ncmfr.

Argument Description

G LTI model to be reduced (without any other inputs will plot its
Hankel singular values and prompt for reduced order)

ORDER (Optional) Integer for the desired order of the reduced model, or
optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of a system
is kept, because from control stability point of view, getting rid of unstable state(s) is
dangerous to model a system. The ncfmr method allows the original model to have jω-
axis singularities.

'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this
case, reduced order will be determined when the sum of the tails of the Hankel singular
values reaches the 'MaxError'.

Argument Value Description

'MaxError' A real number
or a vector of
different errors

Reduce to achieve H∞ error.

When present, 'MaxError'overides ORDER input.
'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' integer, vector or

cell array
Order of reduced model. Use only if not specified as
2nd argument.

Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase, and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model, that becomes multi-dimensional array
when input is a serial of different model order array.
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Argument Description

REDINFO A STRUCT array with 3 fields:

• REDINFO.GL (left coprime factor)

• REDINFO.GR (right coprime factor)

• REDINFO.hsv (Hankel singular values)

G can be stable or unstable, continuous or discrete.

Examples
Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234,'twister'); 

G = rss(30,5,4); G.d = zeros(5,4);

[g1, redinfo1] = ncfmr(G); % display Hankel SV plot 

                           % and prompt for order (try 15:20)

[g2, redinfo2] = ncfmr(G,20); 

[g3, redinfo3] = ncfmr(G,[10:2:18]);

[g4, redinfo4] = ncfmr(G,'MaxError',[0.01, 0.05]);

for i = 1:4

    figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

More About
Algorithms

Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the kth order reduced model.

1 Find the normalized coprime factors of G by solving Hamiltonian described in [1].
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2 Perform kth order square root balanced model truncation on Gl (or Gr) [2].
3 The reduced model GRED is:

ˆ ˆ

ˆ ˆ

A B

C D

A B C B B D

C D

c m l n m l

l l
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where
Nl(:= Ac, Bn, Cc, Dn)

              Ml := (Ac, Bm, Cc, Dm)

              Cl = (Dm)–1Cc

              Dl = (Dm)–1Dn

References

[1] M. Vidyasagar. Control System Synthesis - A Factorization Approach. London: The
MIT Press, 1985.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

See Also
reduce | balancmr | bstmr | schurmr | hankelmr | hankelsv



 ncfsyn

2-307

ncfsyn
Loop shaping design using Glover-McFarlane method

Syntax
[K,CL,GAM,INFO]=ncfsyn(G)

[K,CL,GAM,INFO]=ncfsyn(G,W1)

[K,CL,GAM,INFO]=ncfsyn(G,W1,W2)

[K,CL,GAM,INFO]=ncfsyn(G,W1,W2,'ref')

Description

ncfsyn is a method for designing controllers that uses a combination of loop shaping and
robust stabilization as proposed in McFarlane and Glover [1]-[2]. The first step is for you
to select a pre- and post-compensator W1 and W2, so that the gain of the 'shaped plant'
Gs: = W2GW1 is sufficiently high at frequencies where good disturbance attenuation is
required and is sufficiently low at frequencies where good robust stability is required.
The second step is to use ncfsyn to compute an optimal positive feedback controllers K.

The optimal Ks has the property that the sigma plot of the shaped loop

Ls=W2*G*W1*Ks

matches the target loop shape Gs optimally, roughly to within plus or minus
20*log10(GAM) db. The number margin GAM=1/ncfmargin(Gs,K) and is always
greater than 1. GAM gives a good indication of robustness of stability to a wide class
of unstructured plant variations, with values in the range 1<GAM<3 corresponding to
satisfactory stability margins for most typical control system designs.

[K,CL,GAM,INFO]=ncfsyn(G,W1,W2,'ref') computes the Glover-McFarlane H∞
normalized coprime factor loop-shaping controller K, with a reference command, for lti
plant G, weights W1 and W2 if the 'ref'option is included. The closed-loop system CL
represents the transfer matrix from the reference and disturbance to the feedback error
and output of W1.
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Examples

Loop Shaping With ncfsyn

The following code shows how ncfsyn can be used for loop-shaping.

s = zpk('s');

G = (s-1)/(s+1)^2;

W1 = 0.5/s;

[K,CL,GAM] = ncfsyn(G,W1);

sigma(G*K,'r',G*W1,'r-.',G*W1*GAM,'k-.',G*W1/GAM,'k-.')
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The singular value plot of the achieved loop G*K is equal to that of the target loop G*W1
to within plus or minus GAM (in dB).

More About

Algorithms

K=W2*Ks*W1, where Ks =K∞ is an optimal H∞ controller that simultaneously minimizes
the two H∞ cost functions

γ
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Roughly speaking, this means for most plants that
σ(W2GW1 K∞), db = σ(W2GW1), db ± γ, db
σ(K∞W2GW1), db = σ(W2GW1), db ± γ, db,

so you can use the weights W1 and W2 for loopshaping. For a more precise bounds on
loopshaping accuracy, see Theorem 16.12 of Zhou and Glover.

Theory ensures that if Gs=NM–1 is a normalized coprime factorization (NCF) of the
weighted plant model Gs satisfying
Gs=N(jw)*N(jw) + M(jw)*M(jw) = I,

then the control system will remain robustly stable for any perturbation 
%Gs  to the

weighted plant model Gs that can be written

%G N Ms = + ∆ + ∆ −
( )( )1 2

1

for some stable pair Δ1, Δ2 satisfying
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The closed-loop H∞-norm objective has the standard signal gain interpretation. Finally
it can be shown that the controller, K∞, does not substantially affect the loop shape
in frequencies where the gain of W2GW1 is either high or low, and will guarantee
satisfactory stability margins in the frequency region of gain cross-over. In the regulator
set-up, the final controller to be implemented is K=W1K∞W2.

Input Arguments

G LTI plant to be controlled
W1,W2 Stable minimum-phase LTI weights, either SISO or MIMO.

Default is W1=I, W2=I
'ref' Reference input to controller. Default is no reference input is

included.

Output Arguments

K LTI controller K= W1*Ks*W2
CL

I

K
I W GW K W GW I

∞
∞

−







 −( ) [ ]2 1

1
2 1,

, LTI H∞ optimal closed loop
GAM

H∞ optimal cost 
1

2 1b W GW K( , )∞  = hinfnorm(CL) ≥ 1

INFO Structure array containing additional information

Additional output INFO fields

INFO.emax nugap robustness emax=1/GAM=ncfmargin(Gs,-Ks)=b(W2GW1,
K∞)

INFO.Gs 'shaped plant' Gs=W2*G*W1

INFO.Ks Ks = K[[BULLET]] = NCFSYN(Gs) = NCFSYN(W2*G*W1)

[MARG,FREQ] = ncfmargin(G,K,TOL) calculates the normalized coprime factor/gap
metric robust stability margin assuming negative feedback.
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MARG = − =
−









 + −

∞
b G K

I

K
I GK G I( , ) / ( ) [ , ]1 1

where G and K are LTI plant and controller, and TOL (default=.001) is the tolerance used
to compute the H∞ norm. FREQ is the peak frequency. That is, the frequency at which the
infinity norm is reached to within TOL.

Algorithms

See McFarlane and Glover [1]–[2] for details.

References

[1] McFarlane, D.C., and K. Glover, Robust Controller Design using Normalised Coprime
Factor Plant Descriptions, Springer Verlag, Lecture Notes in Control and
Information Sciences, vol. 138, 1989.

[2] McFarlane, D.C., and K. Glover, “A Loop Shaping Design Procedure using Synthesis,”
IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 759– 769, June 1992.

[3] Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD dissertation,
Department of Engineering, University of Cambridge, 1993.

[4] Zhou, K., and J.C. Doyle, Essentials of Robust Control. NY: Prentice-Hall, 1998.

See Also
gapmetric | hinfsyn | loopsyn | ncfmargin
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newlmi
Attach identifying tag to LMIs

Syntax
tag = newlmi

Description

newlmi adds a new LMI to the LMI system currently described and returns an identifier
tag for this LMI. This identifier can be used in lmiterm, showlmi, or dellmi commands
to refer to the newly declared LMI. Tagging LMIs is optional and only meant to facilitate
code development and readability.

Identifiers can be given mnemonic names to help keep track of the various LMIs. Their
value is simply the ranking of each LMI in the system (in the order of declaration).
They prove useful when some LMIs are deleted from the LMI system. In such cases, the
identifiers are the safest means of referring to the remaining LMIs.

See Also
setlmis | lmivar | lmiterm | getlmis | lmiedit | dellmi
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normalized2actual
Convert value for atom in normalized coordinates to corresponding actual value

Syntax
avalue = normalized2actual(A,NV)

Description

Converts a normalized value NV of an atom to its corresponding actual (unnormalized)
value.

If NV is an array of values, then avalue will be an array of the same dimension.

Examples

Create uncertain real parameters with a range that is symmetric about the nominal
value, where each endpoint is 1 unit from the nominal. Points that lie inside the range
are less than 1 unit from the nominal, while points that lie outside the range are greater
than 1 unit from the nominal.

a = ureal('a',3,'range',[1 5]); 

actual2normalized(a,[1 3 5]) 

ans = 

   -1.0000   -0.0000    1.0000 

normalized2actual(a,[-1 1]) 

ans = 

   1.0000    5.0000 

normalized2actual(a,[-1.5 1.5]) 

ans = 

   0.0000    6.0000 

See Also
actual2normalized | robuststab | robustperf
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pdlstab
Assess robust stability of polytopic or parameter-dependent system

Syntax

[tau,Q0,Q1,...] = pdlstab(pds,options)

Description

pdlstab uses parameter-dependent Lyapunov functions to establish the stability
of uncertain state-space models over some parameter range or polytope of systems.
Only sufficient conditions for the existence of such Lyapunov functions are available in
general. Nevertheless, the resulting robust stability tests are always less conservative
than quadratic stability tests when the parameters are either time-invariant or slowly
varying.

For an affine parameter-dependent system

E(p)x˙ = A(p)x + B(p)u

y = C(p)x + D(p)u

with p = (p1, . . ., pn) ∊ Rn, pdlstab seeks a Lyapunov function of the form

V(xp, ) = xTQ(p)–1x, Q(p) = Q0 + p1Q1 + . . .pnQn

such that dV(x, p)/dt < 0 along all admissible parameter trajectories. The system
description pds is specified with psys and contains information about the range of
values and rate of variation of each parameter pi.

For a time-invariant polytopic system

Ex˙ = Ax + Bu

  y = Cx + Du

with
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pdlstab seeks a Lyapunov function of the form

V(x, α) = xTQ(α)–1x, Q(α) = α1Q1 + . . .+ αnQn

such that dV(x, α)/dt < 0 for all polytopic decompositions of the form Equation 2-17.

Several options and control parameters are accessible through the optional argument
options:

• Setting options(1)=0 tests robust stability (default)
• When options(2)=0, pdlstab uses simplified sufficient conditions for faster

running times. Set options(2)=1 to use the least conservative conditions

More About

Tips

For affine parameter-dependent systems with time-invariant parameters, there is
equivalence between the robust stability of

E p x A p x( ) ( )& =

and that of the dual system

E p z A p zT T
( ) ( )& =

However, the second system may admit an affine parameter-dependent Lyapunov
function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the dual system
Equation 2-19 when it fails on Equation 2-18.

See Also
quadstab
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pdsimul
Time response of parameter-dependent system along given parameter trajectory

Syntax
pdsimul(pds,'traj',tf,'ut',xi,options)

[t,x,y] = pdsimul(pds,pv,'traj',tf,'ut',xi,options)

Description

pdsimul simulates the time response of an affine parameter-dependent system

E(p)x˙ = A(p)x + B(p)u

       y = C(p)x + D(p)u

along a parameter trajectory p(t) and for an input signal u(t). The parameter trajectory
and input signals are specified by two time functions p=traj(t) and u=ut(t). If 'ut'
is omitted, the response to a step input is computed by default.

The affine system pds is specified with psys. The function pdsimul also accepts the
polytopic representation of such systems as returned by aff2pol(pds) or hinfgs. The
final time and initial state vector can be reset through tf and xi (their respective default
values are 5 seconds and 0). Finally, options gives access to the parameters controlling
the ODE integration (type help gear for details).

When invoked without output arguments, pdsimul plots the output trajectories y(t).
Otherwise, it returns the vector of integration time points t as well as the state and
output trajectories x,y.

See Also
psys | pvec



 polydec

2-317

polydec
Compute polytopic coordinates with respect to box corners

Syntax
vertx = polydec(PV)

[C,vertx] = polydec(PV,P)

Description

vertx = polydec(PV) takes an uncertain parameter vector PV taking values ranging
in a box, and returns the corners or vertices of the box as columns of the matrix vertx.

[C,vertx] = polydec(PV,P) takes an uncertain parameter vector PV and a value P of
the parameter vector PV, and returns the convex decomposition C of P over the set VERTX
of box corners:

P = c1*VERTX(:,1) + ... + cn*VERTX(:,n)

cj >=0 ,              c1 + ... + cn = 1

The list vertx of corners can be obtained directly by typing

vertx = polydec(PV)

See Also
pvec | pvinfo | aff2pol | hinfgs



2 Alphabetical List

2-318

popov
Perform Popov robust stability test

Syntax
[t,P,S,N] = popov(sys,delta,flag)

Description

popov uses the Popov criterion to test the robust stability of dynamical systems with
possibly nonlinear and/or time-varying uncertainty. The uncertain system must be
described as the interconnection of a nominal LTI system sys and some uncertainty
delta.

The command

[t,P,S,N] = popov(sys,delta)

tests the robust stability of this interconnection. Robust stability is guaranteed if t < 0.
Then P determines the quadratic part xTPx of the Lyapunov function and D and S are the
Popov multipliers.

If the uncertainty delta contains real parameter blocks, the conservatism of the Popov
criterion can be reduced by first performing a simple loop transformation. To use this
refined test, call popov with the syntax

[t,P,S,N] = popov(sys,delta,1)  

See Also
quadstab | pdlstab
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psinfo
Inquire about polytopic or parameter-dependent systems created with psys

Syntax
psinfo(ps)

[type,k,ns,ni,no] = psinfo(ps)

pv = psinfo(ps,'par')

sk = psinfo(ps,'sys',k)

sys = psinfo(ps,'eval',p)

Description

psinfo  is a multi-usage function for queries about a polytopic or parameter-dependent
system ps created with psys. It performs the following operations depending on the
calling sequence:

• psinfo(ps) displays the type of system (affine or polytopic); the number k of SYSTEM
matrices involved in its definition; and the numbers of ns, ni, no of states, inputs,
and outputs of the system. This information can be optionally stored in MATLAB
variables by providing output arguments.

• pv = psinfo(ps,'par') returns the parameter vector description (for parameter-
dependent systems only).

• sk = psinfo(ps,'sys',k) returns the k-th SYSTEM matrix involved in the
definition of ps. The ranking k is relative to the list of systems syslist used in
psys.

• sys = psinfo(ps,'eval',p) instantiates the system for a given vector p of
parameter values or polytopic coordinates.

For affine parameter-dependent systems defined by the SYSTEM matrices S0, S1, . . .,
Sn, the entries of p should be real parameter values p1, . . ., pn and the result is the
LTI system of SYSTEM matrix
S(p) = S0 + p1S1 + . . .+ pnSn
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For polytopic systems with SYSTEM matrix ranging in
Co{S1, . . ., Sn},

the entries of p should be polytopic coordinates p1, . . ., pn satisfying pj ≥ 0 and the
result is the interpolated LTI system of SYSTEM matrix

S
p S p S

p p

n n

n

=
+ +
+ +

1 1

1

L

L

See Also
psys
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psys
Specify polytopic or parameter-dependent linear systems

Syntax
pols = psys(syslist)

affs = psys(pv,syslist)

Description

psys  specifies state-space models where the state-space matrices can be uncertain,
time-varying, or parameter-dependent.

psys supports two types of uncertain state-space models:

• Polytopic systems
E(t) x˙ = A(t)x + B(t)u
y = C(t)x + D(t)u

whose SYSTEM matrix takes values in a fixed polytope:

A t jE t B t

C t D t

S

A jE B

C D

t

( ) ( ) ( )

( ) ( )

( )

+







 ∈

+


1 2444 3444

Co 1 1 1

1 1







+

























S

Ak jE B

C D

S

k k

k k

k1

1 2444 3444

…

1 2444 3444

, ,

where S1, . . ., Sk are given “vertex” systems and
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denotes the convex hull of S1, . . ., Sk (polytope of matrices with vertices S1, . . ., Sk)
• Affine parameter-dependent systems

E(p)x˙ = A(p)x + B(p)u
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y = C(p)x + D(p)u

where A(· ); B(· ), . . ., E(· ) are fixed affine functions of some vector p = (p1, . . ., pn) of
real parameters, i.e.,
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where S0, S1, . . ., Sn are given SYSTEM matrices. The parameters pi can be time-
varying or constant but uncertain.

The argument syslist lists the SYSTEM matrices Si characterizing the polytopic value
set or parameter dependence. In addition, the description pv of the parameter vector
(range of values and rate of variation) is required for affine parameter- dependent models
(see pvec for details). Thus, a polytopic model with vertex systems S1, . . ., S4 is created
by

pols = psys([s1,s2,s3,s4])

while an affine parameter-dependent model with 4 real parameters is defined by

affs = psys(pv,[s0,s1,s2,s3,s4])

The output is a structured matrix storing all the relevant information.

See Also
psinfo | pvec | aff2pol
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pvec

Specify range and rate of variation of uncertain or time-varying parameters

Syntax

pv = pvec('box',range,rates)

pv = pvec('pol',vertices)

Description

pvec is used in conjunction with psys to specify parameter-dependent systems. Such
systems are parametrized by a vector p = (p1, . . ., pn) of uncertain or time-varying real
parameters pi. The function pvec defines the range of values and the rates of variation
of these parameters.

The type 'box' corresponds to independent parameters ranging in intervals

p p pj j j≤ ≤

The parameter vector p then takes values in a hyperrectangle of Rn called the parameter
box. The second argument range is an n-by-2 matrix that stacks up the extremal values
p j  and p j  of each pj. If the third argument rates is omitted, all parameters are

assumed time-invariant. Otherwise, rates is also an n-by-2 matrix and its j-th row

specifies lower and upper bounds ν j  and ν j  on 
dp

dt

j :

ν νj
j

j

dp

dt
≤ ≤

Set ν j  = –Inf and ν j  = Inf if pj(t) can vary arbitrarily fast or discontinuously.
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The type 'pol' corresponds to parameter vectors p ranging in a polytope of the
parameter space Rn. This polytope is defined by a set of vertices V1, . . ., Vn corresponding
to “extremal” values of the vector p. Such parameter vectors are declared by the
command

pv = pvec('pol',[v1,v2, . . ., vn])

where the second argument is the concatenation of the vectors v1,...,vn.

The output argument pv is a structured matrix storing the parameter vector description.
Use pvinfo to read the contents of pv.

Examples

Consider a problem with two time-invariant parameters
p1 ∊ [–1, 2], p2 ∊ [20, 50]

The corresponding parameter vector p = (p1, p2) is specified by

pv = pvec('box',[-1 2;20 50])

Alternatively, this vector can be regarded as taking values in the rectangle drawn in the
following figure. The four corners of this rectangle are the four vectors
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Hence, you could also specify p by

pv = pvec('pol',[v1,v2,v3,v4])
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Parameter box

See Also
pvinfo | psys
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pvinfo
Describe parameter vector specified with pvec

Syntax
[typ,k,nv] = pvinfo(pv)

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

vj = pvinfo(pv,'par',j)

p = pvinfo(pv,'eval',c)

Description

pvinfo retrieves information about a vector p = (p1, . . ., pn) of real parameters declared
with pvec and stored in pv. The command pvinfo(pv) displays the type of parameter
vector ('box' or 'pol'), the number n of scalar parameters, and for the type 'pol', the
number of vertices used to specify the parameter range.

For the type 'box':

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

returns the bounds on the value and rate of variations of the j-th real parameter pj.
Specifically,

p p t p dp
dp

dt
dpj

j
min ( ) max, min max≤ ≤ ≤ ≤

For the type 'pol':

pvinfo(pv,'par',j)

returns the j-th vertex of the polytope of Rn in which p ranges, while

pvinfo(pv,'eval',c)
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returns the value of the parameter vector p given its barycentric coordinates c with
respect to the polytope vertices (V1, . . .,Vk). The vector c must be of length k and have
nonnegative entries. The corresponding value of p is then given by

p

c V

c

i i
i

k

i

i

k
= =

=

∑

∑
1

1

See Also
pvec | psys
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quadperf
Compute quadratic H∞ performance of polytopic or parameter-dependent system

Syntax
[perf,P] = quadperf(ps,g,options)

Description

The RMS gain of the time-varying system

E t x A t x B t u y C t X D t u( ) ( ) ( ) , ( ) ( )& = + = +   

is the smallest γ > 0 such that

y u
L L

2 2

≤ γ

for all input u(t) with bounded energy. A sufficient condition for Equation 2-21 is the
existence of a quadratic Lyapunov function
V(x) = xTPx, P > 0

such that

∀ ∈ + − <u L
dV

dt
y y u uT T

2
2

0,  γ

Minimizing γ over such quadratic Lyapunov functions yields the quadratic H∞
performance, an upper bound on the true RMS gain.

The command

[perf,P] = quadperf(ps)

computes the quadratic H∞ performance perf when Equation 2-20 is a polytopic or
affine parameter-dependent system ps (see psys). The Lyapunov matrix P yielding the
performance perf is returned in P.
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The optional input options gives access to the following task and control parameters:

• If options(1)=1, perf is the largest portion of the parameter box where the
quadratic RMS gain remains smaller than the positive value g (for affine parameter-
dependent systems only). The default value is 0.

• If options(2)=1, quadperf uses the least conservative quadratic performance test.
The default is options(2)=0 (fast mode)

• options(3) is a user-specified upper bound on the condition number of P (the
default is 109).

See Also
quadstab | psys
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quadstab
Quadratic stability of polytopic or affine parameter-dependent systems

Syntax
[tau,P] = quadstab(ps,options)

Description
For affine parameter-dependent systems
E(p)x˙ = A(p)x, p(t) = (p1(t), . . ., pn(t))

or polytopic systems
E(t)x˙ = A(t)x, (A, E) ∊ Co{(A1, E1), . . ., (An, En)},

quadstab seeks a fixed Lyapunov function V(x) = xTPx with P > 0 that establishes
quadratic stability. The affine or polytopic model is described by ps (see psys).

The task performed by quadstab is selected by options(1):

• if options(1)=0 (default), quadstab assesses quadratic stability by solving the LMI
problem

Minimize τ over Q = QT such that
ATQE + EQAT < τI for all admissible values of (A, E)
Q > I

The global minimum of this problem is returned in tau and the system is
quadratically stable if tau < 0.

• if options(1)=1, quadstab computes the largest portion of the specified parameter
range where quadratic stability holds (only available for affine models). Specifically, if
each parameter pi varies in the interval

p p pi i i i i∈ − +[ , ],0 0δ δ

quadstab computes the largest Θ > 0 such that quadratic stability holds over the
parameter box
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p p pi i i i i∈ − +[ , ]0 0Θ Θδ δ

This “quadratic stability margin” is returned in tau and ps is quadratically stable if
tau ≥ 1.

Given the solution Qopt of the LMI optimization, the Lyapunov matrix P is given by P =

Qopt
−1 . This matrix is returned in P.

Other control parameters can be accessed through options(2) and options(3):

• if options(2)=0 (default), quadstab runs in fast mode, using the least expensive
sufficient conditions. Set options(2)=1 to use the least conservative conditions

• options(3) is a bound on the condition number of the Lyapunov matrix P. The
default is 109.

See Also
pdlstab | psys | decay | quadperf
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randatom
Generate random uncertain atom objects

Syntax
A = randatom(Type)

A = randatom(Type,sz)

A = randatom

Description

A = randatom(Type) generates a 1-by-1 type uncertain object. Valid values for Type
include 'ureal', 'ultidyn', 'ucomplex', and 'ucomplexm'.

A = randatom(Type,sz) generates an sz(1)-by-sz(2) uncertain object. Valid
values for Type include 'ultidyn' or 'ucomplexm'. If Type is set to 'ureal' or
'ucomplex', the size variable is ignored and A is a 1-by-1 uncertain object.

A = randatom, where randatom has no input arguments, results in a 1-by-1 uncertain
object. The class is of this object is randomly selected between 'ureal','ultidyn' and
'ucomplex'.

In general, both rand and randn are used internally. You can control the result of
randatom by setting seeds for both random number generators before calling the
function.

Examples

The following statement creates the ureal uncertain object xr. Note that your display
can differ because a random seed is used.

xr = randatom('ureal') 

xr =

  Uncertain real parameter "NMGXC" with nominal value 5.34 and variability [-2.99,1.92].
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The following statement creates the variable ultidyn uncertain object xlti with three
inputs and four outputs. You will get the results shown below if you set the random
variable seed to 29.

rng(29,'twister');

xlti = randatom('ultidyn',[4 3]) 

xlti =

  Uncertain LTI dynamics "LOSWT" with 4 outputs, 3 inputs, and gain less than 0.293.

See Also
rand | randn | randumat | randuss | ucomplex | ucomplexm | ultidyn
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randumat
Generate random uncertain umat objects

Syntax
um = randumat(ny,nu)

um = randumat

Description

um = randumat(ny,nu) generates an uncertain matrix of size ny-by-nu. randumat
randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.

um = randumat results in a 1-by-1 umat uncertain object, including up to four uncertain
objects.

Examples

The following statement creates the umat uncertain object x1 of size 2-by-3. Note that
your result can differ because a random seed is used.

x1 = randumat(2,3)

x1 =

  Uncertain matrix with 2 rows and 3 columns.

  The uncertainty consists of the following blocks:

    AWYRT: Uncertain real, nominal = 7.09, variability = [-7.84,16.4]%, 2 occurrences

    HRRED: Uncertain complex, nominal = 3.14+5.47i, radius = 1.92, 1 occurrences

    VSIYA: Uncertain real, nominal = -4.05, variability = [-1.53,3.83], 3 occurrences

    YZEZY: Uncertain complex, nominal = -6.54-2.17i, variability = 24%, 1 occurrences

Type "x1.NominalValue" to see the nominal value, "get(x1)" to see all properties, and 

"x1.Uncertainty" to interact with the uncertain elements.

The following statement creates the umat uncertain object x2 of size 4-by-2 with the seed
91.

rng(91,'twister');

x2 = randumat(4,2) 
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x2 =

  Uncertain matrix with 4 rows and 2 columns.

  The uncertainty consists of the following blocks:

    YQZBI: Uncertain complex, nominal = 3.61+1.88i, radius = 1.42, 1 occurrences

Type "x2.NominalValue" to see the nominal value, "get(x2)" to see all properties, 

and "x2.Uncertainty" to interact with the uncertain elements.

See Also
rand | randn | randatom | randuss | ucomplex | ultidyn
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randuss

Generate stable, random uss objects

Syntax

usys = randuss(n)

usys = randuss(n,p)

usys = randuss(n,p,m)

usys = randuss(n,p,m,Ts)

usys = randuss

Description

usys = randuss(n) generates an nth order single-input/single-output uncertain
continuous-time system. randuss randomly selects from uncertain atoms of type
'ureal', 'ultidyn', and 'ucomplex'.

usys = randuss(n,p) generates an nth order single-input uncertain continuous-time
system with p outputs.

usys = randuss(n,p,m) generates an nth order uncertain continuous-time system
with p outputs and m inputs.

usys = randuss(n,p,m,Ts) generates an nth order uncertain discrete-time system
with p outputs and m inputs. The sample time is Ts.

usys = randuss (without arguments) results in a 1-by-1 uncertain continuous-time
uss object with up to four uncertain objects.

In general, both rand and randn are used internally. You can control the result of
randuss by setting seeds for both random number generators before calling the function.
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Examples

The statement creates a fifth order, continuous-time uncertain system s1 of size 2-by-3.
Note your display can differ because a random seed is used.

s1 = randuss(5,2,3) 

USS: 5 States, 2 Outputs, 3 Inputs, Continuous System 

  CTPQV: 1x1 LTI, max. gain = 2.2, 1 occurrence                                 

  IGDHN: real, nominal = -4.03, variability = 

[-3.74667  22.7816]%, 1 occurrence 

  MLGCD: complex, nominal = 8.36+3.09i,  +/- 7.07%, 1 occurrence                

  OEDJK: complex, nominal = -0.346-0.296i, radius = 0.895,

1 occurrence         

See Also
rand | randn | randatom | randumat | ucomplex | ultidyn
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reduce
Simplified access to Hankel singular value based model reduction functions

Syntax
GRED = reduce(G)

GRED = reduce(G,order)

[GRED,redinfo] = reduce(G,'key1','value1',...)

[GRED,redinfo] = reduce(G,order,'key1','value1',...)

Description

reduce  returns a reduced order model GRED of G and a struct array redinfo
containing the error bound of the reduced model, Hankel singular values of the original
system and some other relevant model reduction information.

An error bound is a measure of how close GRED is to G and is computed based on either
additive error, ∥ G-GRED ∥∞, multiplicative error, ∥G–1(G-GRED) ∥∞, or nugap error (ref.:
ncfmr) [1],[4],[5].

Hankel singular values of a stable system indicate the respective state energy of the
system. Hence, reduced order can be directly determined by examining the system
Hankel SV's. Model reduction routines, which based on Hankel singular values
are grouped by their error bound types. In many cases, the additive error method
GRED=reduce(G,ORDER) is adequate to provide a good reduced order model. But for
systems with lightly damped poles and/or zeros, a multiplicative error method (namely,
GRED=reduce(G,ORDER,'ErrorType','mult')) that minimizes the relative error
between G and GRED tends to produce a better fit.

This table describes input arguments for reduce.

Argument Description

G LTI model to be reduced (without any other inputs will plot its Hankel
singular values and prompt for reduced order).
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Argument Description

ORDER (Optional) Integer for the desired order of the reduced model, or
optionally a vector packed with desired orders for batch runs.

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of a physical
system is kept, because from control stability point of view, getting rid of unstable
state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for ' ORDER ' after
an 'ErrorType' is selected. In this case, reduced order will be determined when the
sum of the tails of the Hankel SV's reaches the 'MaxError'.

Argument Value Description

'Algorithm' 'balance'

'schur'

'hankel'

'bst'

'ncf'

Default for 'add' (balancmr)

Option for 'add' (schurmr)

Option for 'add' (hankelmr)

Default for 'mult' (bstmr)

Default for 'ncf' (ncfmr)
'ErrorType' 'add'

'mult'

'ncf'

Additive error (default)

Multiplicative error at model output

NCF nugap error
'MaxError' A real number

or a vector of
different errors

Reduce to achieve H∞ error.

When present, 'MaxError' overrides ORDER input.
'Weights' {Wout,Win} cell

array
Optimal 1x2 cell array of LTI weights Wout
(output) and Win (input); default is both identity;
used only with 'ErrorType', 'add'. Weights
must be invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' Integer, vector or

cell array
Order of reduced model. Use only if not specified as
2nd argument.
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Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Becomes multi-dimensional array when
input is a serial of different model order array.

REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV

For 'hankel' algorithm, STRUCT array becomes:
• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV

• REDINFO.Ganticausal

For 'ncf' option, STRUCT array becomes:
• REDINFO.GL

• REDINFO.GR

• REDINFO.hsv

G can be stable or unstable. G and GRED can be either continuous or discrete.

A successful model reduction with a well-conditioned original model G will ensure that
the reduced model GRED satisfies the infinity norm error bound.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:
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rng(1234,'twister'); 

G = rss(30,5,4);

[g1, redinfo1] = reduce(G); % display Hankel SV plot

                             % and prompt for order

[g2, redinfo2] = reduce(G,20); % default to balancmr

[g3, redinfo3] = reduce(G,[10:2:18],'algorithm','schur'); % select schurmr

[g4, redinfo] = reduce(G,'ErrorType','mult','MaxError',[0.01, 0.05]);

[g5, redinfo5] = reduce(G,'ErrorType','add','algorithm','hankel', ...

       'maxerror',[0.01]);

for i = 1:5

    figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

References

[1] K. Glover, “All Optimal Hankel Norm Approximation of Linear Multivariable
Systems, and Their L

∝
- error Bounds,” Int. J. Control, vol. 39, no. 6, pp.

1145-1193, 1984.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

[3] M. G. Safonov, R. Y. Chiang and D. J. N. Limebeer, “Optimal Hankel Model Reduction
for Nonminimal Systems,” IEEE Trans. on Automat. Contr., vol. 35, No. 4, April,
1990, pp. 496-502.

[4] M. G. Safonov and R. Y. Chiang, “Model Reduction for Robust Control: A Schur
Relative-Error Method,” International Journal of Adaptive Control and Signal
Processing, vol. 2, pp. 259-272, 1988.

[5] K. Zhou, “Frequency weighted L[[BULLET]] error bounds,” Syst. Contr. Lett., Vol. 21,
115-125, 1993.

See Also
balancmr | bstmr | ncfmr | schurmr | hankelmr | hankelsv
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repmat
Replicate and tile array

Syntax
B = repmat(A,M,N)

Description

B = repmat(A,M,N)  creates a large matrix B consisting of an M-by-N tiling of copies of
A.

B = repmat(A,[M N])  accomplishes the same result as repmat(A,M,N).

B = repmat(A,[M N P ...])  tiles the array A to produce an M-by-N-by-P-by-... block
array. A can be N-D.

repmat(A,M,N)  for scalar A is commonly used to produce an M-by-N matrix filled with
values of A.

Examples

Simple examples of using repmat are

repmat(randumat(2,2),2,3) 

repmat(ureal('A',6),[4 2])
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robopt
Options object for use with robuststab and robustperf

Note: robopt will be removed in a future version. Use robuststabOptions or
robustperfOptions instead.



2 Alphabetical List

2-344

robustperf
Robust performance margin of uncertain multivariable system

Syntax

perfmarg = robustperf(usys)

[perfmarg,wcu,report,info] = robustperf(usys)

[perfmarg,wcu,report,info] = robustperf(usys,opt)

Description

The performance of a nominally stable uncertain system model will generally degrade
for specific values of its uncertain elements. robustperf, largely included for historical
purposes, computes the robust performance margin, which is one measure of the level of
degradation brought on by the modeled uncertainty.

As with other uncertain-system analysis tools, only bounds on the performance margin
are computed. The exact robust performance margin is guaranteed to lie between these
upper and lower bounds.

The computation used in robustperf is a frequency-domain calculation. Coupled with
stability of the nominal system, this frequency domain calculation determines robust
performance of usys. If the input system usys is a ufrd, then the analysis is performed
on the frequency grid within the ufrd. Note that the stability of the nominal system
is not verified by the computation. If the input system sys is a uss, then the stability
of the nominal system is first checked, an appropriate frequency grid is generated
(automatically), and the analysis performed on that frequency grid. In all discussion that
follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose usys is a ufrd or uss with M uncertain elements. The results of

[perfmarg,perfmargunc,Report] = robustperf(usys) 
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are such that perfmarg is a structure with the following fields:

Field Description

LowerBound Lower bound on robust performance margin, positive scalar.
UpperBound Upper bound on robust performance margin, positive scalar.
CriticalFrequency The value of frequency at which the performance

degradation curve crosses the y = 1/x curve. See
“Generalized Robustness Analysis”.

perfmargunc is a struct of values of uncertain elements associated with the
intersection of the performance degradation curve and the y = 1/x curve. See “Generalized
Robustness Analysis”. There are M field names, which are the names of uncertain
elements of usys.

Report is a text description of the robust performance analysis results.

If usys is an array of uncertain models, the outputs are struct arrays whose entries
correspond to each model in the array.

Examples

Create a plant with a nominal model of an integrator, and include additive unmodeled
dynamics uncertainty of a level of 0.4 (this corresponds to 100% model uncertainty at 2.5
rads/s).

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4); 

Design a “proportional” controller K that puts the nominal closed-loop bandwidth at 0.8
rad/s. Roll off K at a frequency 25 times the nominal closed-loop bandwidth. Form the
closed-loop sensitivity function.

BW = 0.8; 

K = tf(BW,[1/(25*BW) 1]); 

S = feedback(1,P*K); 

Assess the performance margin of the closed-loop sensitivity function. Because the
nominal gain of the sensitivity function is 1, and the performance degradation curve
is monotonically increasing (see “Generalized Robustness Analysis”), the performance
margin should be less than 1.
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[perfmargin,punc] = robustperf(S); 

perfmargin 

perfmargin = 

           UpperBound: 7.4305e-001 

           LowerBound: 7.4305e-001 

    CriticalFrequency: 5.3096e+000 

You can verify that the upper bound of the performance margin corresponds to a point on
or above the y=1/x curve. First, compute the normalized size of the value of the uncertain
element, and check that this agrees with the upper bound.

nsize = actual2normalized(S.Uncertainty.delta, punc.delta) 

nsize = 

perfmargin.UpperBound 

ans = 

  7.4305e-001 

Compute the system gain with that value substituted, and verify that the product of the
normalized size and the system gain is greater than or equal to 1.

gain = norm(usubs(S,punc),inf,.00001); 

nsize*gain 

ans = 

  1.0000e+000 

Finally, as a sanity check, verify that the robust performance margin is less than the
robust stability margin.

[stabmargin] = robuststab(S); 

stabmargin 

stabmargin = 

                UpperBound: 3.1251e+000 

                LowerBound: 3.1251e+000 

    DestabilizingFrequency: 4.0862e+000 

While the robust stability margin is easy to describe (poles migrating from stable region
into unstable region), describing the robust performance margin is less elementary.
See the diagrams and figures in “Generalized Robustness Analysis”. Rather than
finding values for uncertain elements that lead to instability, the analysis finds values
of uncertain elements “corresponding to the intersection point of the performance
degradation curve with a y=1/x hyperbola.” This characterization, mentioned above in the
description of perfmarg.CriticalFrequency and perfmargunc, is used often in the
descriptions below.
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Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities
and frequency-by-frequency information.

[perfmarg,perfmargunc,Report,Info] = robustperf(usys) 

In addition to the first 3 output arguments, described previously, Info is a structure
with the following fields:

Field Description

Sensitivity A struct with M fields, field names are names of
uncertain elements of usys. Values of fields are positive
and contain the local sensitivity of the overall Stability
Margin to that element's uncertainty range. For instance,
a value of 25 indicates that if the uncertainty range is
enlarged by 8%, then the stability margin should drop by
about 2% (25% of 8). If the Sensitivity property of the
robustperfOptions object is 'off', the values are set to
NaN.

Frequency N-by-1 frequency vector associated with analysis.
BadUncertainValues N-by-1 struct array containing the worst uncertain element

values at each frequency.
MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv.

The (1,1) entry is the µ-upper bound (corresponds to
perfmarg.LowerBound) and the (1,2) entry is the µ-lower
bound (for perfmarg.UpperBound).

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robustperfOptions to specify additional options for the robustperf
computation. For example, you can control what is displayed during the computation,
turn the sensitivity computation on or off, set the step size in the sensitivity computation,
or control the option argument used in the underlying call to mussv. For example, you
can turn the display on and turn off the sensitivity by executing

opt = robustperfOptions('Sensitivity','off','Display','on'); 
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[PerfMarg,Destabunc,Report,Info] = robustperf(usys,opt) 

See the robustperfOptions reference page for more information about available
options.

Limitations

Because the calculation is carried out with a frequency gridding, it is possible (likely)
that the true critical frequency is missing from the frequency vector used in the analysis.
This is similar to the problem in robuststab. However, in comparing to robuststab,
the problem in robustperf is less acute. The robust performance margin, considered
a function of problem data and frequency, is typically a continuous function (unlike
the robust stability margin, described in Getting Reliable Estimates of Robustness
Margins). Hence, in robust performance margin calculations, increasing the density of
the frequency grid will always increase the accuracy of the answers, and in the limit,
answers arbitrarily close to the actual answers are obtainable with finite frequency grids.

More About

Algorithms

A rigorous robust performance analysis consists of two steps:

1 Verify that the nominal system is stable.
2 Robust performance analysis on an augmented system.

The algorithm in robustperf follows this in spirit, with the following limitations:

• If usys is a uss object, then robustperf explicitly checks the stability of the
nominal value. However, if usys is a ufrd model, robustperf instead assumes that
the nominal value is stable, and does not perform this check.

• The exact performance margin is guaranteed to be no larger than UpperBound (some
uncertain elements associated with this magnitude cause instability – one instance
is returned in the structure perfmargunc). The instability created by perfmargunc
occurs at the frequency value in CriticalFrequency.

• Similarly, the exact performance margin is guaranteed to be no smaller than
LowerBound.
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See Also
mussv | norm | robustperfOptions | robuststab | actual2normalized | wcgain
| wcsens | wcmargin
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robustperfOptions
Option set for robustperf

Syntax

options = robustperfOptions

options = robustperfOptions(Name,Value,...)

Description

options = robustperfOptions returns the default option set for the robustperf
command.

options = robustperfOptions(Name,Value,...) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

robustperfOptions takes the following Name arguments:

'Display'

String specifying whether robustperf displays progress of mussv computations.

• 'off' — Do not display progress.
• 'on' — Display progress. This setting overrides the silent ('s') option in the Mussv

string.
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Default: 'off'

'Sensitivity'

String specifying whether robustperf computes the sensitivity of the performance
margin with respect to each individual uncertain element. This element-by-element
sensitivity provides an indication of which elements the performance margin is most
sensitive to. Turning off the element-by-element sensitivity calculation speeds up
robustperf.

• 'on' — Compute the sensitivity for each uncertain element.
• 'off' — Do not compute the sensitivity for each uncertain element.

Default: 'on'

'VaryUncertainty'

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate
uses a finite difference calculation.

Default: 25

'Mussv'

Option string for the mussv calculation that robustperf performs. See mussv for the
available options.

Default:  '' (default behavior of mussv)

Output Arguments

options

Option set containing the specified options for the robustperf command.

Examples

Create an options set for a robustperf calculation that displays the progress of the
mussv calculation. Also, turn off the element-by-element sensitivity calculation.
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 options = robustperfOptions('Display','on','Sensitivity','off');

Alternatively, use dot notation to set the values of options.

options = robustperfOptions;

options.Display = 'on';

options.Sensitivity = 'off';

See Also
robustperf
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robuststab

Calculate robust stability margins of uncertain multivariable system

Syntax

[stabmarg,destabunc,report,info] = robuststab(sys)

[stabmarg,destabunc,report,info] = robuststab(sys,opt)

Description

A nominally stable uncertain system is generally unstable for specific values of its
uncertain elements. Determining the values of the uncertain elements closest to their
nominal values for which instability occurs is a robust stability calculation.

If the uncertain system is stable for all values of uncertain elements within their
allowable ranges (ranges for ureal, norm bound or positive-real constraint for ultidyn,
radius for ucomplex, weighted ball for ucomplexm), the uncertain system is robustly
stable. Conversely, if there is a combination of element values that cause instability, and
all lie within their allowable ranges, then the uncertain system is not robustly stable.

robuststab computes the margin of stability robustness for an uncertain system. A
stability robustness margin greater than 1 means that the uncertain system is stable for
all values of its modeled uncertainty. A stability robustness margin less than 1 implies
that certain allowable values of the uncertain elements, within their specified ranges,
lead to instability.

Numerically, a margin of 0.5 (for example) implies two things: the uncertain system
remains stable for all values of uncertain elements that are less than 0.5 normalized
units away from their nominal values and, there is a collection of uncertain elements
that are less than or equal to 0.5 normalized units away from their nominal values
that results in instability. Similarly, a margin of 1.3 implies that the uncertain system
remains stable for all values of uncertain elements up to 30% outside their modeled
uncertain ranges. See actual2normalized for converting between actual and
normalized deviations from the nominal value of an uncertain element.
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As with other uncertain-system analysis tools, only bounds on the exact stability margin
are computed. The exact robust stability margin is guaranteed to lie in between these
upper and lower bounds.

The computation used in robuststab is a frequency-domain calculation, which
determines whether poles can migrate (due to variability of the uncertain atoms) across
the stability boundary (imaginary axis for continuous-time, unit circle for discrete-
time). Coupled with stability of the nominal system, determining that no migration
occurs constitutes robust stability. If the input system sys is a ufrd, then the analysis
is performed on the frequency grid within the ufrd. Note that the stability of the
nominal system is not verified by the computation. If the input system sys is a uss,
then the stability of the nominal system is first checked, an appropriate frequency grid
is generated (automatically), and the analysis performed on that frequency grid. In all
discussion that follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose sys is a ufrd or uss with M uncertain elements. The results of

[stabmarg,destabunc,Report] = robuststab(sys) 

are that stabmarg is a structure with the following fields

Field Description

LowerBound Lower bound on stability margin, positive scalar. If greater
than 1, then the uncertain system is guaranteed stable for all
values of the modeled uncertainty. If the nominal value of the
uncertain system is unstable, then stabmarg.UpperBound and
stabmarg.LowerBound both equal 0.

UpperBound Upper bound on stability margin, positive scalar. If less than 1,
the uncertain system is not stable for all values of the modeled
uncertainty.

DestabilizingFrequency The critical value of frequency at which instability occurs,
with uncertain elements closest to their nominal values. At a
particular value of uncertain elements (see destabunc below),
the poles migrate across the stability boundary (imaginary-axis in
continuous-time systems, unit-disk in discrete-time systems) at the
frequency given by DestabilizingFrequency.
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destabunc is a structure of values of uncertain elements, closest to nominal,
that cause instability. There are M field names, which are the names of uncertain
elements of sys. The value of each field is the corresponding value of the uncertain
element, such that when jointly combined, lead to instability. The command
pole(usubs(sys,destabunc)) shows the instability. If A is an uncertain element of
sys, then

actual2normalized(destabunc.A,sys.Uncertainty.A) 

will be less than or equal to UpperBound, and for at least one uncertain element of sys,
this normalized distance will be equal to UpperBound, proving that UpperBound is
indeed an upper bound on the robust stability margin.

Report is a text description of the arguments returned by robuststab.

If sys is an array of uncertain models, the outputs are struct arrays whose entries
correspond to each model in the array.

Examples

Construct a feedback loop with a second-order plant and a PID controller with
approximate differentiation. The second-order plant has frequency-dependent
uncertainty, in the form of additive unmodeled dynamics, introduced with an ultidyn
object and a shaping filter.

robuststab is used to compute the stability margins of the closed-loop system with
respect to the plant model uncertainty.

P = tf(4,[1 .8 4]); 

delta = ultidyn('delta',[1 1],'SampleStateDim',5); 

Pu = P + 0.25*tf([1],[.15 1])*delta; 

C = tf([1 1],[.1 1]) + tf(2,[1 0]); 

S = feedback(1,Pu*C); 

[stabmarg,destabunc,report,info] = robuststab(S); 

You can view the stabmarg variable.

stabmarg 

stabmarg = 

                UpperBound: 0.8181 

                LowerBound: 0.8181 

    DestabilizingFrequency: 9.1321 
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As the margin is less than 1, the closed-loop system is not stable for plant models covered
by the uncertain model Pu. There is a specific plant within the uncertain behavior
modeled by Pu (actually about 82% of the modeled uncertainty) that leads to closed-loop
instability, with the poles migrating across the stability boundary at 9.1 rads/s.

The report variable is specific, giving a plain-language version of the conclusion.

report 

report = 

Uncertain System is NOT robustly stable to modeled uncertainty. 

 -- It can tolerate up to 81.8% of modeled uncertainty.

 -- A destabilizing combination of 81.8% the modeled uncertainty

exists, causing an instability at 9.13 rad/s.

 -- Sensitivity with respect to uncertain element ... 

   'delta' is 100%.  Increasing 'delta' by 25% leads to a

25% decrease in the margin. 

Because the problem has only one uncertain element, the stability margin is completely
determined by this element, and hence the margin exhibits 100% sensitivity to this
uncertain element.

You can verify that the destabilizing value of delta is indeed about 0.82 normalized
units from its nominal value.

actual2normalized(S.Uncertainty.delta,destabunc.delta)

ans =

    0.8181

Use usubs to substitute the specific value into the closed-loop system. Verify that there
is a closed-loop pole near j9.1, and plot the unit-step response of the nominal closed-loop
system, as well as the unstable closed-loop system.

Sbad = usubs(S,destabunc); 

pole(Sbad) 

ans = 

  1.0e+002 * 

  -3.2318          

  -0.2539          

  -0.0000 + 0.0913i 

  -0.0000 - 0.0913i 

  -0.0203 + 0.0211i 

  -0.0203 - 0.0211i 

  -0.0106 + 0.0116i 

  -0.0106 - 0.0116i 
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step(S.NominalValue,'r--',Sbad,'g',4); 

Finally, as an ad-hoc test, set the gain bound on the uncertain delta to 0.81 (slightly
less than the stability margin). Sample the closed-loop system at 100 values, and
compute the poles of all these systems.

S.Uncertainty.delta.Bound = 0.81; 

S100 = usample(S,100); 

p100 = pole(S100); 

max(real(p100(:))) 

ans = 

 -6.4647e-007 

As expected, all poles have negative real parts.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities
and frequency-by-frequency information.

[StabMarg,Destabunc,Report,Info] = robuststab(sys) 

In addition to the first 3 output arguments, described previously, Info is a structure
with the following fields

Field Description

Sensitivity A struct with M fields, Field names are names of uncertain
elements of sys. Values of fields are positive, each the local
sensitivity of the overall stability margin to that element's
uncertainty range. For instance, a value of 25 indicates that if the
uncertainty range is enlarged by 8%, then the stability margin
should drop by about 2% (25% of 8). If the Sensitivity property
of the robuststabOptions object is 'off', the values are set to
NaN.

Frequency N-by-1 frequency vector associated with analysis.
BadUncertainValues N-by-1 struct array containing the destabilizing uncertain element

values at each frequency.
MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv.

The (1,1) entry is the µ-upper bound (corresponds to
stabmarg.LowerBound) and the (1,2) entry is the µ-lower bound
(for stabmarg.UpperBound).
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Field Description

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robuststabOptions to specify additional options for the robuststab
computation. For example, you can control what is displayed during the computation,
turning the sensitivity computation on or off, set the step-size in the sensitivity
computation, or control the option argument used in the underlying call to mussv. For
instance, you can turn the display on, and the sensitivity calculation off by executing

opt = robuststabOptions('Sensitivity','off','Display','on'); 

[StabMarg,Destabunc,Report,Info] = robuststab(sys,opt) 

See the robuststabOptions reference page for more information about available
options.

Limitations
Under most conditions, the robust stability margin at each frequency is a continuous
function of the problem data at that frequency. Because the problem data, in turn, is
a continuous function of frequency, it follows that finite frequency grids are usually
adequate in correctly assessing robust stability bounds, assuming the frequency grid is
dense enough.

Nevertheless, there are simple examples that violate this. In some problems, the
migration of poles from stable to unstable only occurs at a finite collection of specific
frequencies (generally unknown to you). Any frequency grid that excludes these critical
frequencies (and almost every grid will exclude them) will result in undetected migration
and misleading results, namely stability margins of ∞.

See Getting Reliable Estimates of Robustness Margins for more information about
circumventing the problem in an engineering-relevant fashion.

More About
Algorithms

A rigorous robust stability analysis consists of two steps:
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1 Verify that the nominal system is stable;
2 Verify that no poles cross the stability boundary as the uncertain elements vary

within their ranges.

Because the stability boundary is also associated with the frequency response, the
second step can be interpreted (and carried out) as a frequency domain calculation. This
amounts to a classical µ-analysis problem.

The algorithm in robuststab follows this in spirit, with the following limitations.

• If sys is a uss object, then the first requirement of stability of nominal value
is explicitly checked within robuststab. However, if sys is an ufrd, then the
verification of nominal stability from the nominal frequency response data is not
performed, and is instead assumed.

• In the second step (monitoring the stability boundary for the migration of
poles), rather than check all points on stability boundary, the algorithm only
detects migration of poles across the stability boundary at the frequencies in
info.Frequency.

See “Limitations” on page 2-358 for information about issues related to migration
detection.

The exact stability margin is guaranteed to be no larger than UpperBound (some
uncertain elements associated with this magnitude cause instability – one instance is
returned in the structure destabunc). The instability created by destabunc occurs at
the frequency value in DestabilizingFrequency.

Similarly, the exact stability margin is guaranteed to be no smaller than LowerBound. In
other words, for all modeled uncertainty with magnitude up to LowerBound, the system
is guaranteed stable. These bounds are derived using the upper bound for the structured
singular value, which is essentially optimally-scaled, small-gain theorem analysis.

See Also
loopmargin | mussv | robuststabOptions | robustperf | wcgain | wcsens |
wcmargin
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robuststabOptions
Option set for robuststab

Syntax

options = robuststabOptions

options = robuststabOptions(Name,Value,...)

Description

options = robuststabOptions returns the default option set for the robuststab
command.

options = robuststabOptions(Name,Value,...) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

robuststabOptions takes the following Name arguments:

'Display'

String specifying whether robuststab displays progress of mussv computations.

• 'off' — Do not display progress.
• 'on' — Display progress. This setting overrides the silent ('s') option in the Mussv

string.
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Default: 'off'

'Sensitivity'

String specifying whether robuststab computes the sensitivity of the stability margin
with respect to each individual uncertain element. This element-by-element sensitivity
provides an indication of which elements the stability margin is most sensitive to.
Turning off the element-by-element sensitivity calculation speeds up robuststab.

• 'on' — Compute the sensitivity for each uncertain element.
• 'off' — Do not compute the sensitivity for each uncertain element.

Default: 'on'

'VaryUncertainty'

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate
uses a finite difference calculation.

Default: 25

'Mussv'

Option string for the mussv calculation that robustperf performs. See mussv for the
available options.

Default:  '' (default behavior of mussv)

Output Arguments

options

Option set containing the specified options for the robuststab command.

Examples

Create an options set for a robuststab calculation that displays the progress of the
mussv calculation. Also, turn off the element-by-element sensitivity calculation.

 options = robuststabOptions('Display','on','Sensitivity','off');
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Alternatively, use dot notation to set the values of options.

options = robuststabOptions;

options.Display = 'on';

options.Sensitivity = 'off';

See Also
robuststab



 schurmr

2-363

schurmr
Balanced model truncation via Schur method

Syntax
GRED = schurmr(G)

GRED = schurmr(G,order)

[GRED,redinfo] = schurmr(G,key1,value1,...)

[GRED,redinfo] = schurmr(G,order,key1,value1,...)

Description

schurmr returns a reduced order model GRED of G and a struct array redinfo containing
the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system
Hankel singular values indicate the respective state energy of the system. Hence,
reduced order can be directly determined by examining the system Hankel SV's, σι.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥ G-
GRED ∥∞ for well-conditioned model reduced problems [1]:

G Gred i

k

n

− ≤∞
+
∑2

1

σ

This table describes input arguments for schurmr.

Argument Description

G LTI model to be reduced (without any other inputs will plot its Hankel
singular values and prompt for reduced order).
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Argument Description

ORDER (Optional) an integer for the desired order of the reduced model, or
optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of a system
is kept, because from control stability point of view, getting rid of unstable state(s) is
dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for ' ORDER '. In
this case, reduced order will be determined when the sum of the tails of the Hankel sv's
reaches the 'MaxError'.

Argument Value Description

'MaxError' A real number
or a vector of
different errors

Reduce to achieve H∞ error.

When present, 'MaxError'overides ORDER input.
'Weights' {Wout,Win} cell

array
Optimal 1x2 cell array of LTI weights Wout
(output) and Win (input); default is both identity;
Weights must be invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' Integer, vector or

cell array
Order of reduced model. Use only if not specified as
2nd argument.

Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Becomes multi-dimensional array when
input is a serial of different model order array.

REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound

• REDINFO.StabSV

• REDINFO.UnstabSV



 schurmr

2-365

G can be stable or unstable. G and GRED can be either continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234,'twister'); 

G = rss(30,5,4);

[g1, redinfo1] = schurmr(G); % display Hankel SV plot

                             % and prompt for order (try 15:20)

[g2, redinfo2] = schurmr(G,20); 

[g3, redinfo3] = schurmr(G,[10:2:18]);

[g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]);

for i = 1:4

     figure(i); eval(['sigma(G,g' num2str(i) ');']);

end

More About

Algorithms

Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the kth order reduced model [16].

1 Find the controllability and observability grammians P and Q.
2 Find the Schur decomposition for PQ in both ascending and descending order,

respectively,

V PQV

V PQV

n

A
T

A

n

D
T

D

=





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







=
















λ

λ
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λ

1

1

0

0 0

0

0 0

… …

… …
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3 Find the left/right orthonormal eigen-bases of PQ associated with the kth big Hankel
singular values.

V V VA R SMALL L BIG= [ , ], ,

674 84

4 Find the SVD of (VT
L,BIG VR,BIG) = U Σ VT

V V VD R BIG L SMALL= [ , ], ,

674 84

5 Form the left/right transformation for the final kth order reduced model

        SL,BIG = V L,BIG UΣ(1:k,1:k)–½

        SR,BIG = VR,BIGVΣ(1:k,1:k)–½

6 Finally,

ˆ ˆ

ˆ ˆ

, , ,

,

A B

C D

S AS S B

CS D

T
L BIG R BIG

T
L BIG

R BIG





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


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=



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







The proof of the Schur balance truncation algorithm can be found in [2].

References

[1] K. Glover, “All Optimal Hankel Norm Approximation of Linear Multivariable
Systems, and Their L

∝
- error Bounds,” Int. J. Control, vol. 39, no. 6, pp.

1145-1193, 1984.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733.

See Also
reduce | balancmr | bstmr | ncfmr | hankelmr | hankelsv
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sdhinfnorm
Compute L2 norm of continuous-time system in feedback with discrete-time system

Syntax
[gaml,gamu] = sdhinfnorm(sdsys,k)

[gaml,gamu] = sdhinfnorm(sdsys,k,delay)

[gaml,gamu] = sdhinfnorm(sdsys,k,delay,tol)

Description

[gaml,gamu] = sdhinfnorm(sdsys,k)  computes the L2 induced norm of a
continuous-time LTI plant, sdsys, in feedback with a discrete-time controller, k,
connected through an ideal sampler and a zero-order hold (see figure below). sdsys
must be strictly proper, such that the constant feedback gain must be zero. The outputs,
gamu and gaml, are upper and lower bounds on the induced L2 norm of the sampled-data
closed-loop system.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay)  includes the input argument
delay. delay is a nonnegative integer associated with the number of computational
delays of the controller. The default value of the delay is 0.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay,tol)  includes the input
argument, tol, which defines the difference between upper and lower bounds when
search terminates. The default value of tol is 0.001.
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Examples

Consider an open-loop, continuous-time transfer function p = 30/s(s+30) and a
continuous-time controller k = 4/(s+4). The closed-loop continuous-time system has a
peak magnitude across frequency of 1.

p = ss(tf(30,[1 30])*tf([1],[1 0])); 

k = ss(tf(4,[1 4])); 

cl = feedback(p,k); 

norm(cl,'inf') 

ans = 

     1 

Initially the controller is to be implemented at a sample rate of 1.5 Hz. The sample-data
norm of the closed-loop system with the discrete-time controller is 1.0.

kd = c2d(k,0.75,'zoh'); 

[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd); 

[gu gl] 

ans = 

    3.7908    3.7929 

Because of the large difference in norm between the continuous-time and sampled-data
closed-loop system, the sample rate of the controller is increased from 1.5 Hz to 5 Hz. The
sample-data norm of the new closed-loop system is 3.79.

kd = c2d(k,0.2,'zoh'); 

[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd); 

[gu gl] 

ans = 

    1.0044    1.0049 

More About

Algorithms

sdhinfnorm uses variations of the formulas described in the Bamieh and Pearson paper
to obtain an equivalent discrete-time system. (These variations are done to improve the
numerical conditioning of the algorithms.) A preliminary step is to determine whether
the norm of the continuous-time system over one sampling period without control is
less than the given value. This requires a search and is, computationally, a relatively
expensive step.
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References

Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic Systems with
Applications to Sampled-Data Control,” IEEE Transactions on Automatic Control, Vol.
AC–37, 1992, pp. 418-435.

See Also
gapmetric | norm | hinfsyn | sdhinfsyn | sdlsim



2 Alphabetical List

2-370

sdhinfsyn
Compute H∞ controller for sampled-data system

Syntax
[K,GAM]=sdhinfsyn(P,NMEAS,NCON)

[K,GAM]=sdhinfsyn(P,NMEAS,NCON, KEY1,VALUE1,KEY2,VALUE2,...)

Description
sdhinfsyn controls a continuous-time LTI system P with a discrete-time controller K.
The continuous-time LTI plant P has a state-space realization partitioned as follows:

P
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where the continuous-time disturbance inputs enter through B1, the outputs from
the controller are held constant between sampling instants and enter through B2, the
continuous-time errors (to be kept small) correspond to the C1 partition, and the output
measurements that are sampled by the controller correspond to the C2 partition. B2 has
column size ncon and C2 has row size nmeas. Note that the D matrix must be zero.

sdhinfsyn synthesizes a discrete-time LTI controller K to achieve a given norm (if
possible) or find the minimum possible norm to within tolerance TOLGAM.
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Similar to hinfsyn, the function sdhinfsyn employs a γ iteration. Given a high and
low value of γ, GMAX and GMIN, the bisection method is used to iterate on the value of γ
in an effort to approach the optimal H∞ control design. If GMAX = GMIN, only one γ value
is tested. The stopping criterion for the bisection algorithm requires that the relative
difference between the last γ value that failed and the last γ value that passed be less
than TOLGAM.

Input arguments

P LTI plant
NMEAS Number of measurements output to controller
NCON Number of control inputs

Optional input arguments (KEY, VALUE) pairs are similar to hinfsyn, but with
additional KEY values 'Ts' and 'DELAY'.

KEY VALUE Meaning

'GMAX' real Initial upper bound on GAM (default=Inf)
'GMIN' real Initial lower bound on GAM (default=0)
'TOLGAM' real Relative error tolerance for GAM (default=.01)
'Ts' real (Default=1) sample time of the controller to be

designed
'DELAY' integer (Default=0) a nonnegative integer giving the

number of sample periods delay for the control
computation

'DISPLAY' 'off'

'on'

(Default) no command window display, or the
command window displays synthesis progress
information

Output arguments

K H∞ controller
GAM Final γ value of H∞ cost achieved
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More About

Algorithms

sdhinfsyn uses a variation of the formulas described in the Bamieh and Pearson paper
[1] to obtain an equivalent discrete-time system. (This is done to improve the numerical
conditioning of the algorithms.) A preliminary step is to determine whether the norm
of the continuous-time system over one sampling period without control is less than the
given γ-value. This requires a search and is computationally a relatively expensive step.

References

[1] Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic Systems
with Applications to Sampled-Data Control,” IEEE Transactions on Automatic
Control, Vol. AC–37, 1992, pp. 418-435.

See Also
norm | hinfsyn | sdhinfnorm
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sdlsim
Time response of sampled-data feedback system

Syntax

sdlsim(p,k,w,t,tf)

sdlsim(p,k,w,t,tf,x0,z0)

sdlsim(p,k,w,t,tf,x0,z0,int)

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int)

Description

sdlsim(p,k,w,t,tf)  plots the time response of the hybrid feedback system.
lft(p,k), is forced by the continuous input signal described by w and t (values and
times, as in lsim). p must be a continuous-time LTI system, and k must be discrete-time
LTI system with a specified sample time (the unspecified sample time –1 is not allowed).
The final time is specified with tf.

sdlsim(p,k,w,t,tf,x0,z0)  specifies the initial state vector x0 of p, and z0 of k, at
time t(1).

sdlsim(p,k,w,t,tf,x0,z0,int)  specifies the continuous-time integration step
size int. sdlsim forces int = (k.Ts)/N int where N>4 is an integer. If any of these
optional arguments is omitted, or passed as empty matrices, then default values are
used. The default value for x0 and z0 is zero. Nonzero initial conditions are allowed for p
(and/or k) only if p (and/or k) is an ss object.

If p and/or k is an LTI array with consistent array dimensions, then the time simulation
is performed pointwise across the array dimensions.

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)  computes the continuous-time response of
the hybrid feedback system lft(p,k) forced by the continuous input signal defined by



2 Alphabetical List

2-374

w and t (values and times, as in lsim). p must be a continuous-time system, and k must
be discrete-time, with a specified sample time (the unspecified sample time –1 is not
allowed). The final time is specified with tf. The outputs vt, yt and ut are 2-by-1 cell
arrays: in each the first entry is a time vector, and the second entry is the signal values.
Stored in this manner, the signal vt is plotted by using one of the following commands:

plot(vt{1},vt{2})

plot(vt{:}) 

Signals yt and ut are respectively the input to k and output of k.

If p and/or k are LTI arrays with consistent array dimensions, then the time simulation
is performed pointwise across the array dimensions. The outputs are 2-by-1-by-array
dimension cell arrays. All responses can be plotted simultaneously, for example,
plot(vt).

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int) The optional arguments are int
(integration step size), x0 (initial condition for p), and z0 (initial condition for k). sdlsim
forces int = (k.Ts)/N, where N>4 is an integer. If any of these arguments is omitted,
or passed as empty matrices, then default values are used. The default value for x0 and
z0 is zero. Nonzero initial conditions are allowed for p (and/or k) only if p (and/or k) is an
ss object.

Examples

Time Response of Continuous Plant with Discrete Controller

To illustrate the use of sdlsim, consider the application of a discrete controller to a plant
with an integrator and near integrator. A continuous plant and a discrete controller are
created. A sample-and-hold equivalent of the plant is formed and the discrete closed-loop
system is calculated. Simulating this gives the system response at the sample points.
sdlsim is then used to calculate the intersample behavior.

P = tf(1,[1, 1e-5,0]);

T = 1.0/20;

C = ss([-1.5 T/4; -2/T -.5],[ .5 2;1/T 1/T],...

   [-1/T^2  -1.5/T], [1/T^2  0],T);

Pd = c2d(P,T,'zoh');

The closed-loop digital system is now set up. You can use sysic to construct the
interconnected feedback system.
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systemnames = 'Pd C';

inputvar = '[ref]';

outputvar = '[Pd]';

input_to_Pd = '[C]';

input_to_C = '[ref ; Pd]';

sysoutname = 'dclp';

cleanupsysic = 'yes';

sysic;

Use step to simulate the digital step response.

[yd,td] = step(dclp,20*T);

Set up the continuous interconnection and calculate the sampled data response with
sdlsim.

M = [0,1;1,0;0,1]*blkdiag(1,P);

t = [0:.01:1]';

u = ones(size(t));

y1 = sdlsim(M,C,u,t);

plot(td,yd,'r*',y1{:},'b-')

axis([0,1,0,1.5])

xlabel('Time: seconds')

title('Step response: discrete (*) and continuous')
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You can see the effect of a nonzero initial condition in the continuous-time system. Note
how examining the system at only the sample points will underestimate the amplitude of
the overshoot.

y2 = sdlsim(M,C,u,t,1,0,[0.25;0]);

plot(td,yd,'r*',y1{:},'b-',y2{:},'g--')

axis([0,1,0,1.5])

xlabel('Time: seconds')

title('Step response: nonzero initial condition')
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Finally, you can examine the effect of a sinusoidal disturbance at the continuous-time
plant output. This controller is not designed to reject such a disturbance and the system
does not contain antialiasing filters. Simulating the effect of antialiasing filters is easily
accomplished by including them in the continuous interconnection structure.

M2 = [0,1,1;1,0,0;0,1,1]*blkdiag(1,1,P);

t = [0:.001:1]';

dist = 0.1*sin(41*t);

u = ones(size(t));

[y3,meas,act] = sdlsim(M2,C,[u dist],t,1);

plot(y3{:},'-',t,dist,'b--',t,u,'g-.')

xlabel('Time: seconds')

title('Step response: disturbance (dashed) and  output (solid)')
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More About

Algorithms

sdlsim oversamples the continuous-time, N times the sample rate of the controller k.

See Also
gapmetric | norm | hinfsyn | sdhinfnorm | sdhinfsyn | sysic
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sectf

State-space sector bilinear transformation

Syntax

[G,T] = sectf(F,SECF,SECG)

Description

[G,T] = sectf(F,SECF,SECG) computes a linear fractional transform T such that the
system lft(F,K) is in sector SECF if and only if the system lft(G,K) is in sector SECG
where

G=lft(T,F,NU,NY)

where NU and NY are the dimensions of uT2 and yT2, respectively—see the following figure.
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Sector transform G=lft(T,F,NU,NY).

sectf are used to transform general conic-sector control system performance
specifications into equivalent H∞-norm performance specifications.

Input Arguments

F LTI state-space
plant

 

SECG,

SECF:

Conic Sector:  

[-1,1] or [-1;1]
y u

2 2≤

[0,Inf] or
[0;Inf]

0 ≤ ∗[ ]Re y u
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Input Arguments

[A,B] or [A;B]
0 ≥ −( ) ∗ −( ) Re y Au y Bu

[a,b] or [a;b]
0 ≥ −( ) ∗ −( ) Re ( ) ( )y diag a u y diag b u

S
0 11 12 21 22≥ +( ) ∗ +( ) Re S u S y S u S y

S
0 11 12 21 22≥ +( ) ∗ +( ) Re S u S y S u S y

where A,B are scalars in [–∞, ∞] or square matrices; a,b are vectors; S=[S11
S12;S21,S22] is a square matrix whose blocks S11,S12,S21,S22 are either scalars
or square matrices; S is a two-port system S=mksys(a,b1,b2,...,'tss') with transfer
function

S s
S s S s

S s S s
( )

( ) ( )

( ) ( )
=











11 12

21 22

Output
Arguments

Description

G Transformed plant G(s)=lftf(T,F)
T LFT sector transform, maps conic sector SECF into conic sector SECG

Output Variables  

G The transformed plant G(s) = lftf(T,F):
T The linear fractional transformation T(s) = T

Examples

The statement G(jω) inside sector[–1, 1] is equivalent to the H∞ inequality

sup ( )
ω

σ ωG j G( ) = ≤∞ 1

Given a two-port open-loop plant P(s) := P, the command P1 = sectf(P,[0,Inf],
[-1,1])computes a transformed P1(s):= P1 such that if lft(G,K) is inside sector[–1, 1]
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if and only if lft(F,K) is inside sector[0, ∞]. In other words, norm(lft(G,K), inf)<1
if and only if lft(F,K) is strictly positive real. See Example of Sector Transform.

Sector Transform Block Diagram

Here is a simple example of the sector transform.

P s
s

P s
s

( ) , ( ) , .=
+

∈ −[ ] → = + ∈ ∞[ ]1

1
1 1

2

2
01sector sector

You can compute this by simply executing the following commands:

P = ss(tf(1,[1 1])); 

P1 = sectf(P,[-1,1],[0,Inf]);

The Nyquist plots for this transformation are depicted in Example of Sector Transform.
The condition P1(s) inside [0, ∞] implies that P1(s) is stable and P1(jω) is positive real, i.e.,

P j P j1 1 0
∗ + ≥ ∀( ) ( )ω ω ω   

Example of Sector Transform



 sectf

2-383

Limitations

A well-posed conic sector must have det(B–A)≠ 0 or

det .
s s

s s

11 12

21 22

0


















 ≠

Also, you must have dim( ) dim( )u yF F1 1=  since sectors are only defined for square
systems.

More About

Algorithms

sectf uses the generalization of the sector concept of [3] described by [1]. First the
sector input data Sf= SECF and Sg=SECG is converted to two-port state-space form; non-
dynamical sectors are handled with empty a, b1, b2, c1, c2 matrices. Next the equation

S s
u

y
S s

u

y
g

g

g
f

f

f
( ) ( )

1

1

1

1













=












is solved for the two-port transfer function T(s) from u yg f
1 1

 to u yf g
1 1

. Finally, the
function lftf is used to compute G(s) as G = lftf(T,F).

References

[1] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems.
Cambridge, MA: MIT Press, 1980.

[2] Safonov, M.G., E.A. Jonckheere, M. Verma and D.J.N. Limebeer, “Synthesis of
Positive Real Multivariable Feedback Systems,” Int. J. Control, vol. 45, no. 3, pp.
817-842, 1987.
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[3] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear Feedback
Systems ≥— Part I: Conditions Using Concepts of Loop Gain, Conicity, and
Positivity,” IEEE Trans. on Automat. Contr., AC-11, pp. 228-238, 1966.

See Also
lft | hinfsyn
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setlmis
Initialize description of LMI system

Syntax
setlmis(lmi0)

Description

Before starting the description of a new LMI system with lmivar and lmiterm, type

setlmis([])

to initialize its internal representation.

To add on to an existing LMI system, use the syntax

setlmis(lmi0)

where lmi0 is the internal representation of this LMI system. Subsequent lmivar and
lmiterm commands will then add new variables and terms to the initial LMI system
lmi0.

See Also
getlmis | newlmi | lmivar | lmiterm
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setmvar
Instantiate matrix variable and evaluate all LMI terms involving this matrix variable

Syntax
mnewsys = setmvar(lmisys,X,Xval)

Description

setmvar sets the matrix variable X with identifier X to the value Xval. All terms
involving X are evaluated, the constant terms are updated accordingly, and X is removed
from the list of matrix variables. A description of the resulting LMI system is returned in
newsys.

The integer X is the identifier returned by lmivar when X is declared. Instantiating X
with setmvar does not alter the identifiers of the remaining matrix variables.

The function setmvar is useful to freeze certain matrix variables and optimize with
respect to the remaining ones. It saves time by avoiding partial or complete redefinition
of the set of LMI constraints.

Examples

Consider the system
x˙ = Ax + Bu

and the problem of finding a stabilizing state-feedback law u = Kx where K is an
unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding P > 0 and K such that
(A + BK)P + P(A + BKT) + I < 0.

With the change of variable Y := KP, this condition reduces to the LMI
AP + PAT + BY + YTBT + I < 0.

This LMI is entered by the commands
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n = size(A,1)                 % number of states 

ncon = size(B,2)              % number of inputs

setlmis([]) 

P = lmivar(1,[n 1])           % P full symmetric 

Y = lmivar(2,[ncon n])        % Y rectangular

lmiterm([1 1 1 P],A,1,'s')    % AP+PA' 

lmiterm([1 1 1 Y],B,1,'s')    % BY+Y'B' 

lmiterm([1 1 1 0],1)          % I 

lmis = getlmis

To find out whether this problem has a solution K for the particular Lyapunov matrix P =
I, set P to I by typing

news = setmvar(lmis,P,1)

The resulting LMI system news has only one variable Y = K. Its feasibility is assessed by
calling feasp:

[tmin,xfeas] = feasp(news) 

Y = dec2mat(news,xfeas,Y)

The computed Y is feasible whenever tmin < 0.

See Also
evallmi | delmvar
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showlmi
Return left and right sides of LMI after evaluation of all variable terms

Syntax
[lhs,rhs] = showlmi(evalsys,n)

Description

For given values of the decision variables, the function evallmi evaluates all variable
terms in a system of LMIs. The left and right sides of the n-th LMI are then constant
matrices that can be displayed with showlmi. If evalsys is the output of evallmi, the
values lhs and rhs of these left and right sides are given by

[lhs,rhs] = showlmi(evalsys,n)

An error is issued if evalsys still contains variable terms.

Examples

See the description of evallmi.

See Also
evallmi | setmvar
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simplify
Simplify representation of uncertain object

Syntax
B = simplify(A)

B = simplify(A,'full')

B = simplify(A,'basic')

B = simplify(A,'class')

Description

B = simplify(A)  performs model-reduction-like techniques to detect and eliminate
redundant copies of uncertain elements. Depending on the result, the class of B may
be lower than A. The AutoSimplify property of each uncertain element in A governs
what reduction methods are used. After reduction, any uncertain element which does not
actually affect the result is deleted from the representation.

B = simplify(A,'full')  overrides all uncertain element's AutoSimplify property,
and uses 'full' reduction techniques.

B = simplify(A,'basic')  overrides all uncertain element's AutoSimplify
property, and uses 'basic' reduction techniques.

B = simplify(A,'class')  does not perform reduction. However, any uncertain
elements in A with zero occurences are eliminated, and the class of B may be lower than
the class of A.

Examples

Create a simple umat with a single uncertain real parameter. Select specific elements,
note that result remains in class umat. Simplify those same elements, and note that class
changes.

p1 = ureal('p1',3,'Range',[2 5]); 
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L = [2 p1]; 

L(1) 

UMAT: 1 Rows, 1 Columns 

L(2) 

UMAT: 1 Rows, 1 Columns 

  p1: real, nominal = 3, range = [2  5], 1 occurrence 

simplify(L(1)) 

ans = 

     2 

simplify(L(2)) 

Uncertain Real Parameter: Name p1, NominalValue 3, Range [2  5] 

Create four uncertain real parameters, with a default value of
AutoSimplify('basic'), and define a high order polynomial [1].

m = ureal('m',125000,'Range',[100000 150000]); 

xcg = ureal('xcg',.23,'Range',[.15 .31]); 

zcg = ureal('zcg',.105,'Range',[0 .21]); 

va = ureal('va',80,'Range',[70 90]); 

cw = simplify(m/(va*va)*va,'full') 

UMAT: 1 Rows, 1 Columns 

   m: real, nominal = 1.25e+005, range = [100000  150000],

1 occurrence 

  va: real, nominal = 80, range = [70  90], 1 occurrence               

cw = m/va; 

fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... 

      -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... 

      -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... 

      + 4.9*xcg*cw - 2.7*xcg*cw*cw ... 

      +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... 

      +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... 

      +1.12*xcg*zcg + 24.6*cw*zcg ... 

      +.45*xcg*xcg*cw*cw - 46.85 

UMAT: 1 Rows, 1 Columns 

    m: real, nominal = 1.25e+005, range = [100000  150000],

18 occurrences 

   va: real, nominal = 80, range = [70  90], 8 occurrences                

  xcg: real, nominal = 0.23, range = [0.15  0.31], 18 occurrences         

  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

The result of the high-order polynomial is an inefficient representation involving 18
copies of m, 8 copies of va, 18 copies of xcg and 1 copy of zcg. Simplify the expression,
using the 'full' simplification algorithm

fac2s = simplify(fac2,'full') 
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UMAT: 1 Rows, 1 Columns 

    m: real, nominal = 1.25e+005, range = [100000  150000],

4 occurrences 

   va: real, nominal = 80, range = [70  90], 4 occurrences               

  xcg: real, nominal = 0.23, range = [0.15  0.31], 2 occurrences         

  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

which results in a much more economical representation.

Alternatively, change the AutoSimplify property of each parameter to 'full' before
forming the polynomial.

m.AutoSimplify = 'full'; 

xcg.AutoSimplify = 'full'; 

zcg.AutoSimplify = 'full'; 

va.AutoSimplify = 'full'; 

You can form the polynomial, which immediately gives a low order representation.

cw = m/va; 

fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... 

      -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... 

      -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... 

      + 4.9*xcg*cw - 2.7*xcg*cw*cw ... 

      +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... 

      +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... 

      +1.12*xcg*zcg + 24.6*cw*zcg ... 

      +.45*xcg*xcg*cw*cw - 46.85 

UMAT: 1 Rows, 1 Columns 

    m: real, nominal = 1.25e+005, range = [100000  150000],

4 occurrences 

   va: real, nominal = 80, range = [70  90], 4 occurrences               

  xcg: real, nominal = 0.23, range = [0.15  0.31], 2 occurrences         

  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

Create two real parameters, da and dx, and a 2-by-3 matrix, ABmat, involving
polynomial expressions in the two real parameters .

da = ureal('da',0,'Range',[-1 1]); 

dx = ureal('dx',0,'Range',[-1 1]); 

a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; 

a12 = .934 + da*(.0474 - .302*da); 

a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... 

     + dx*(9.65 - da*(55.7 + da*177)); 

a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); 
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b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; 

b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; 

ABmat = [a11 a12 b1;a21 a22 b2] 

UMAT: 2 Rows, 3 Columns 

  da: real, nominal = 0, range = [-1  1], 19 occurrences 

  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Use 'full' simplification to reduce the complexity of the description.

ABmatsimp = simplify(ABmat,'full') 

UMAT: 2 Rows, 3 Columns 

  da: real, nominal = 0, range = [-1  1], 7 occurrences 

  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Alternatively, you can set the parameter's AutoSimplify property to 'full'.

da.AutoSimplify = 'full'; 

dx.AutoSimplify = 'full'; 

Now you can rebuild the matrix

a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; 

a12 = .934 + da*(.0474 - .302*da); 

a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... 

     + dx*(9.65 - da*(55.7 + da*177)); 

a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); 

b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; 

b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; 

ABmatFull = [a11 a12 b1;a21 a22 b2] 

UMAT: 2 Rows, 3 Columns 

  da: real, nominal = 0, range = [-1  1], 7 occurrences 

  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Limitations

Multidimensional model reduction and realization theory are only partially complete
theories. The heuristics used by simplify are that - heuristics. The order in which
expressions involving uncertain elements are built up, eg., distributing across addition
and multiplication, can affect the details of the representation (i.e., the number of
occurences of a ureal in an uncertain matrix). It is possible that simplify's naive
methods cannot completely resolve these differences, so one may be forced to work with
“nonminimal” representations of uncertain systems.
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More About

Algorithms

simplify uses heuristics along with one-dimensional model reduction algorithms to
partially reduce the dimensionality of the representation of an uncertain matrix or
system.

References

[1] Varga, A. and G. Looye, “Symbolic and numerical software tools for LFT-based low
order uncertainty modeling,” IEEE International Symposium on Computer Aided
Control System Design, 1999, pp. 5-11.

[2] Belcastro, C.M., K.B. Lim and E.A. Morelli, “Computer aided uncertainty modeling
for nonlinear parameter-dependent systems Part II: F-16 example,” IEEE
International Symposium on Computer Aided Control System Design, 1999, pp.
17-23.

See Also
umat | uss | ucomplex | ureal | uss
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skewdec
Form skew-symmetric matrix

Syntax

x = skewdec(m,n)

Description

skewdec(m,n) forms the m-by-m skew-symmetric matrix

0 1 2

1 0 3

2 3 0

− − − −
+ − −
+ +

















( ) ( )

( ) ( )

( ) ( )

n n

n n

n n

…

…

…

… … … …

… … … …







This function is useful to define skew-symmetric matrix variables. In this case, set n to
the number of decision variables already used.

See Also
decinfo | lmivar
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slowfast
Slow and fast modes decomposition

Syntax
[G1,G2] = slowfast(G,ns)

Description

slowfast computes the slow and fast modes decompositions of a system G(s) such that
G(s) = [G1(s)] + [G2(s)]

G(s) contains the N slowest modes (modes with the smallest absolute value) of G.

[ ( )] : � , � , � , �G s A B C D1 11 1 1 1= ( )  denotes the slow part of G(s). The slow poles have low
frequency and magnitude values.

[ ( )] : � , � , � , �G s A B C D2 22 2 2 2= ( )  denotes the fast part. The fast poles have high frequency and
magnitude values.

The variable ns denotes the index where the modes will be split.

Use freqsep to separate slow and fast modes at a specified cutoff frequency instead of a
specified number of modes.

References

M.G. Safonov, E.A. Jonckheere, M. Verma and D.J.N. Limebeer, “Synthesis of Positive
Real Multivariable Feedback Systems”, Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.

See Also
schur | modreal | freqsep
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squeeze
Remove singleton dimensions for umat objects

Syntax
B = squeeze(A)

Description

B = squeeze(A) returns an array B with the same elements as A but with all the
singleton dimensions removed. A singleton is a dimension such that size(A,dim)==1.
2-D arrays are unaffected by squeeze so that row vectors remain rows.

See Also
permute | reshape
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uss/ssbal
Scale state/uncertainty while preserving uncertain input/output map of uncertain system

Syntax
usysout = ssbal(usys)

usysout = ssbal(usys,wc)

usysout = ssbal(usys,wc,FSflag)

usysout = ssbal(usys,wc,FSflag,BLTflag)

Description

usysout = ssbal(usys) yields a system whose input/output and uncertain properties
are the same as usys, a uss object. The numerical conditioning of usysout is usually
better than that of usys, improving the accuracy of additional computations performed
with usysout. usysout is a uss object. The balancing algorithm uses mussv to
balance the constant uncertain state-space matrices in discrete time. If usys is a
continuous-time uncertain system, the uncertain state-space is mapped by using a
bilinear transformation into discrete time for balancing.

usysout = ssbal(usys,wc) defines the critical frequency wc for the bilinear prewarp
transformation from continuous time to discrete time. The default value of wc is 1 when
the nominal uncertain system is stable and 1.25*mxeig when it is unstable. mxeig
corresponds to the value of the real, most positive pole of usys.

usysout = ssbal(usys,wc,FSflag) sets the scaling flag FSflag to handle repeated
uncertain parameters. Setting FSflag=1 uses full matrix scalings to balance the
repeated uncertain parameter blocks. FSflag=0, the default, uses a single, positive
scalar to balance the repeated uncertain parameter blocks.

usysout = ssbal(usys,wc,FSflag,BLTflag) sets the bilinear transformation
flag, BLTflag. By default, BLTflag=1 transforms the continuous-time system usys to
a discrete-time system for balancing. BLTflag=0 results in balancing the continuous-
time state-space data from usys. Note that if usys is a discrete-time system, no bilinear
transformation is performed.
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ssbal does not work on an array of uncertain systems. An error message is generated to
alert you to this.

Examples

Consider a two-input, two-output, two-state uncertain system with two real parameter
uncertainties, p1 and p2.
p2=ureal('p2',-17,'Range',[-19 -11]); 

p1=ureal('p1',3.2,'Percentage',0.43); 

A = [-12 p1;.001 p2]; 

B = [120 -809;503 24]; 

C = [.034 .0076; .00019 2]; 

usys = ss(A,B,C,zeros(2,2)) 

USS: 2 States, 2 Outputs, 2 Inputs, Continuous System 

  p1: real, nominal = 3.2, variability = [-0.43  0.43]%, 1 occurrence 

  p2: real, nominal = -17, range = [-19  -11], 1 occurrence          

usys.NominalValue 

a = 

          x1     x2 

   x1    -12    3.2 

   x2  0.001    -17 

b = 

         u1    u2 

   x1   120  -809 

   x2   503    24 

c = 

            x1       x2 

   y1    0.034   0.0076 

   y2  0.00019        2 

d = 

       u1  u2 

   y1   0   0 

   y2   0   0 

Continuous-time model. 

ssbal is used to balance the uncertain system usys.

usysout = ssbal(usys) 

USS: 2 States, 2 Outputs, 2 Inputs, Continuous System 

  p1: real, nominal = 3.2, variability = [-0.43  0.43]%,

1 occurrence 

  p2: real, nominal = -17, range = [-19  -11], 1 occurrence  

        

usysout.NominalValue 

a = 

             x1        x2 

   x1       -12    0.3302 



 uss/ssbal

2-399

   x2  0.009692       -17 

b = 

           u1      u2 

   x1  0.7802   -5.26 

   x2    31.7   1.512 

c = 

            x1       x2 

   y1    5.229   0.1206 

   y2  0.02922    31.74 

d = 

       u1  u2 

   y1   0   0 

   y2   0   0 

Continuous-time model. 

See Also
canon | c2d | d2c | mussv | mussvextract | ss2ss
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stack
Construct array by stacking uncertain matrices, models, or arrays

Syntax
umatout = stack(arraydim,umat1,umat2,...)

usysout = stack(arraydim,usys1,usys2,...)

Description

stack constructs an uncertain array by stacking uncertain matrices, models, or arrays
along array dimensions of an uncertain array.

umatout = stack(arraydim,umat1,umat2,...) produces an array of uncertain
matrices, umatout, by stacking (concatenating) the umat matrices (or umat arrays)
umat1, umat2,... along the array dimension arraydim. All models must have the same
number of columns and rows. The column/row dimensions are not counted in the array
dimensions.

umatout = stack(arraydim,usys1,usys2,...) produces an array of uncertain
models, ufrd or uss, or usysout, by stacking (concatenating) the ufrd or uss matrices
(or ufrd or uss arrays) usys1, usys2,... along the array dimension arraydim. All
models must have the same number of columns and rows (the same input/output
dimensions). Note that the input/output dimensions are not considered for arrays.

Examples

Consider usys1 and usys2, two single-input/single-output uss models:

zeta = ureal('zeta',1,'Range',[0.4 4]); 

wn = ureal('wn',0.5,'Range',[0.3 0.7]); 

P1 = tf(1,[1 2*zeta*wn wn^2]); 

P2 = tf(zeta,[1 10]); 

You can stack along the first dimension to produce a 2-by-1 uss array.
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stack(1,P1,P1) 

USS: 2 States, 1 Output, 1 Input, Continuous System [array, 2 x 1] 

    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 

  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

You can stack along the second dimension to produce a 1-by-2 uss array.

stack(2,P1,P2)   % produces a 1-by-2 USS array. 

USS: 2 States, 1 Output, 1 Input, Continuous System [array, 1 x 2] 

    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 

  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

You can stack along the third dimension to produce a 1-by-1-by-2 uss array.

stack(3,P1,P2)   % produces a 1-by-1-by-2 USS array. 

USS: 2 States, 1 Output, 1 Input, Continuous System

[array, 1 x 1 x 2] 

    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 

  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

See Also
append | blkdiag | horzcat | vertcat
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symdec
Form symmetric matrix

Syntax
x = symdec(m,n)

Description

symdec(m,n) forms an m-by-m symmetric matrix of the form

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n n n
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n n n
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+ + +
+ + +
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












This function is useful to define symmetric matrix variables. n is the number of decision
variables.

See Also
decinfo
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sysic
Build interconnections of certain and uncertain matrices and systems

Syntax
sysout = sysic

Description

sysic requires that 3 variables with fixed names be present in the calling workspace:
systemnames, inputvar and outputvar.

systemnames is a char containing the names of the subsystems (double, tf, zpk,
ss, uss, frd, ufrd, etc) that make up the interconnection. The names must be
separated by spaces with no additional punctuation. Each named variable must exist in
the calling workspace.

inputvar is a char, defining the names of the external inputs to the interconnection.
The names are separated by semicolons, and the entire list is enclosed in square brackets
[ ]. Inputs can be scalar or multivariate. For instance, a 3-component (x,y,z) force
input can be specified with 3 separate names, Fx, Fy, Fz. Alternatively, a single name
with a defined integer dimension can be specified, as in F{3}. The order of names in
inputvar determines the order of inputs in the interconnection.

outputvar is a char, describing the outputs of the interconnection. Outputs do not
have names-they are simply linear combinations of individual subsystem's outputs
and external inputs. Semicolons delineate separate components of the interconnections
outputs. Between semicolons, signals can be added and subtracted, and multiplied by
scalars. For multivariable subsystems, arguments within parentheses specify which
subsystem outputs are to be used and in what order. For instance, plant(2:4,1,9:11)
specifies outputs 2,3,4,1,9,10,11 from the subsystem plant. If a subsystem is listed
in outputvar without arguments, then all outputs from that subsystem are used.

sysic also requires that for every subsystem name listed in systemnames, a
corresponding variable, input_to_ListedSubSystemName must exist in the calling
workspace. This variable is similar to outputvar – it defines the input signals to this
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particular subsystem as linear combinations of individual subsystem's outputs and
external inputs.

sysout = sysic will perform the interconnection described by the variables
above, using the subsystem data in the names found in systemnames. The resulting
interconnection is returned in the output argument, listed above as sysout.

After running sysic the variables systemnames, inputvar, outputvar and all of
the input_to_ListedSubSystemName will exist in the workspace. Setting the optional
variable cleanupsysic to 'yes' will cause these variables to be removed from the
workspace after sysic has formed the interconnection.

Examples

A simple system interconnection, identical to the system illustrated in the iconnect
description. Consider a three-input, two-output LTI matrix T,

which has internal structure

P = rss(3,2,2); 

K = rss(1,1,2); 
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A = rss(1,1,1); 

W = rss(1,1,1); 

systemnames = 'W A K P'; 

inputvar = '[noise;deltemp;setpoint]'; 

outputvar = '[57.3*P(1);setpoint-P(2)]'; 

input_to_W = '[deltemp]'; 

input_to_A = '[K]'; 

input_to_K = '[P(2)+noise;setpoint]'; 

input_to_P = '[W;A]'; 

cleanupsysic = `yes';

T = sysic; 

exist(`inputvar') 

Limitations

The syntax of sysic is limited, and for the most part is restricted to what is shown
here. The iconnect interconnection object can also be used to define complex
interconnections, and has a more flexible syntax.

Within sysic, error-checking routines monitor the consistency and availability of the
subsystems and their inputs. These routines provide a basic level of error detection to aid
the user in debugging.

See Also
iconnect
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systune

Tune fixed-structure control systems

Syntax

[CL,fSoft] = systune(CL0,SoftReqs)

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs)

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options)

[CL,fSoft,gHard,info] = systune( ___ )

Description

[CL,fSoft] = systune(CL0,SoftReqs) tunes the free parameters of the control
system model, CL0, to best meet the soft tuning requirements. The best achieved soft
constraint values are returned as fSoft.

Note: For tuning Simulink models with systune, use slTuner to create an interface to
your Simulink model. You can then tune the control system with systune for slTuner
(requires Simulink Control Design).

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs) tunes the control
system to best meet the soft tuning requirements subject to satisfying the hard tuning
requirements (constraints). It returns the best achieved values for the soft and hard
constraints.

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options) specifies
options for the optimization.

[CL,fSoft,gHard,info] = systune( ___ ) also returns detailed information about
each optimization run. All input arguments described for the previous syntaxes also
apply here.
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Examples

Tune Control System to Soft Requirements

Tune a cascaded control system to meet requirements of reference tracking and
disturbance rejection.

The cascaded control system of the following illustration includes two tunable controllers,
the PI controller for the inner loop, , and the PID controller for the outer loop, .

The blocks  and  mark analysis-point locations. These are locations at which loops
can be opened or signals injected for the purpose of specifying requirements for tuning
the system.

Tune the free parameters of this control system to meet the following requirements:

• The output signal, , tracks the reference signal, , with a response time of 10
seconds and a steady-state error of 1%.

• A disturbance injected at  is suppressed at  by a factor of 10.

Create tunable Control Design Blocks to represent the controllers, and numeric LTI
models to represent the plants. Also, create AnalysisPoint blocks to mark the points of
interest in each feedback loop.

G2 = zpk([],-2,3);

G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');

C10 = ltiblock.pid('C1','pid');

X1 = AnalysisPoint('X1');
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X2 = AnalysisPoint('X2');

Connect these components to build a model of the entire closed-loop control system.

InnerLoop = feedback(X2*G2*C20,1);

CL0 = feedback(G1*InnerLoop*C10,X1);

CL0.InputName = 'r';

CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and output channels
allows you to identify them when you specify tuning requirements for the system.

Specify tuning requirements for reference tracking and disturbance rejection.

Rtrack = TuningGoal.Tracking('r','y',10,0.01);

Rreject = TuningGoal.Gain('X2','y',0.1);

The TuningGoal.Tracking requirement specifies that the signal at 'y' track the
signal at 'r' with a response time of 10 seconds and a tracking error of 1%.

The TuningGoal.Gain requirement limits the gain from the implicit input associated
with the AnalysisPoint block, X2, to 'y'. (See AnalysisPoint.) Limiting this gain to a
value less than 1 ensures that a disturbance injected at X2 is suppressed at the output.

Tune the control system.

[CL,fSoft] = systune(CL0,[Rtrack,Rreject]);

Final: Soft = 1.24, Hard = -Inf, Iterations = 111

systune converts each tuning requirement into a normalized scalar value, f. The
command adjusts the tunable parameters of CL0 to minimize the f values. For each
requirement, the requirement is satisfied if f < 1 and violated if f >1. fSoft is the vector
of minimized f values. The largest of the minimized f values is displayed as Soft.

The output model CL is the tuned version of CL0. CL contains the same Control Design
Blocks as CL0, with current values equal to the tuned parameter values.

Validate that the tuned control system meets the tracking requirement by examining the
step response from 'r' to 'y'.

stepplot(CL)
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The step plot shows that in the tuned control system, CL, the output tracks the input
with approximately the desired response time.

Validate the tuned system against the disturbance rejection requirement by examining
the closed-loop response to a signal injected at X2.

CLdist = getIOTransfer(CL,'X2','y');

stepplot(CLdist);
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getIOTransfer extracts the closed-loop response from the specified inputs to outputs.
In general, getIOTransfer and getLoopTransfer are useful for validating a control
system tuned with systune.

You can also use viewSpec to compare the responses of the tuned control system directly
against the tuning requirements, Rtrack and Rreject.

viewSpec([Rtrack,Rreject],CL)
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Tune Control System to Both Hard and Soft Requirements

Tune a cascaded control system to meet requirements of reference tracking and
disturbance rejection. These requirements are subject to a hard constraint on the
stability margins of the inner and outer loops.

The cascaded control system of the following illustration includes two tunable controllers,
the PI controller for the inner loop, , and the PID controller for the outer loop, .
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The blocks  and  mark analysis-point locations. These are locations at which you
can open loops or inject signals for the purpose of specifying requirements for tuning the
system.

Tune the free parameters of this control system to meet the following requirements:

• The output signal, , tracks the reference signal at  with a response time of 5
seconds and a steady-state error of 1%.

• A disturbance injected at  is suppressed at the output, , by a factor of 10.

Impose these tuning requirements subject to hard constraints on the stability margins of
both loops.

Create tunable Control Design Blocks to represent the controllers and numeric LTI
models to represent the plants. Also, create AnalysisPoint blocks to mark the points of
interest in each feedback loop.

G2 = zpk([],-2,3);

G1 = zpk([],[-1 -1 -1],10);

C20 = ltiblock.pid('C2','pi');

C10 = ltiblock.pid('C1','pid');

X1 = AnalysisPoint('X1');

X2 = AnalysisPoint('X2');

Connect these components to build a model of the entire closed-loop control system.

InnerLoop = feedback(X2*G2*C20,1);

CL0 = feedback(G1*InnerLoop*C10,X1);

CL0.InputName = 'r';

CL0.OutputName = 'y';

CL0 is a tunable genss model. Specifying names for the input and output channels
allows you to identify them when you specify tuning requirements for the system.
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Specify tuning requirements for reference tracking and disturbance rejection.

Rtrack = TuningGoal.Tracking('r','y',5,0.01);

Rreject = TuningGoal.Gain('X2','y',0.1);

The TuningGoal.Tracking requirement specifies that the signal at 'y' tracks the
signal at 'r' with a response time of 5 seconds and a tracking error of 1%.

The TuningGoal.Gain requirement limits the gain from the implicit input associated
with the AnalysisPoint block X2 to the output, 'y'. (See AnalysisPoint.) Limiting this
gain to a value less than 1 ensures that a disturbance injected at X2 is suppressed at the
output.

Specify tuning requirements for the gain and phase margins.

RmargOut = TuningGoal.Margins('X1',18,60);

RmargIn = TuningGoal.Margins('X2',18,60);

RmargIn.Openings = 'X1';

RmargOut imposes a minimum gain margin of 18 dB and a minimum phase margin
of 60 degrees. Specifying X1 imposes that requirement on the outer loop. Similarly,
RmargIn imposes the same requirements on the inner loop, identified by X2. To ensure
that the inner-loop margins are evaluated with the outer loop open, include the outer-
loop analysis-point location, X1, in RmargIn.Openings.

Tune the control system to meet the soft requirements of tracking and disturbance
rejection, subject to the hard constraints of the stability margins.

SoftReqs = [Rtrack,Rreject];

HardReqs = [RmargIn,RmargOut];

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs);

Final: Soft = 1.14, Hard = 0.97971, Iterations = 171

       Some closed-loop poles are marginally stable (decay rate near 1e-07)

systune converts each tuning requirement into a normalized scalar value, f for the soft
constraints and g for the hard constraints. The command adjusts the tunable parameters
of CL0 to minimize the f values, subject to the constraint that each g < 1.

The displayed value Hard is the largest of the minimized g values in gHard. This value is
less than 1, indicating that both the hard constraints are satisfied.

Validate the tuned control system against the stability margin requirements.
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figure;

viewSpec(HardReqs,CL)

The viewSpec plot confirms that the stability margin requirements for both loops are
satisfied by the tuned control system at all frequencies. The red liness represent the
actual stability margins of the tuned system. The blue lines represent the margin used in
the optimization calculation, which is an upper bound on the actual margin.

Examine whether the tuned control system meets the tracking requirement by
examining the step response from 'r' to 'y'.

figure;

stepplot(CL,20)
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The step plot shows that in the tuned control system, CL, the output tracks the input
but the response is somewhat slower than desired and the tracking error may be larger
than desired. For further information, examine the tracking requirement directly with
viewSpec.

figure;

viewSpec(Rtrack,CL)
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The actual tracking error crosses into the shaded area between 1 and 10 rad/s, indicating
that the requirement is not met in this regime. Thus, the tuned control system cannot
meet the soft tracking requirement, time subject to the hard constraints of the stability
margins. To achieve the desired performance, you may need to relax one of your
requirements or convert one or more hard constraints to soft constraints.

• “Tuning Control Systems with SYSTUNE”
• “Building Tunable Models”
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Input Arguments

CL0 — Control system to tune
generalized state-space model | model array

Control system to tune, specified as a generalized state-space (genss) model or array of
models with tunable parameters. To construct CL0:

1 Parameterize the tunable elements of your control system. You can use predefined
structures, such as ltiblock.pid, ltiblock.gain, and ltiblock.tf.
Alternatively, you can create your own structure from elementary tunable
parameters (realp).

2 Build a closed-loop model of the overall control system as an interconnection of fixed
and tunable components. To do so, use model interconnection commands such as
feedback and connect. Use AnalysisPoint blocks to mark additional signals of
interest for specifying and assessing tuning requirements.

Specify an array of tunable genss models that have the same tunable parameters for
robust tuning of a controller against a set of plant models.

SoftReqs — Soft tuning requirements (objectives)
vector of TuningGoal requirement objects

Soft tuning requirements (objectives) for tuning the control system, specified as
a vector of TuningGoal requirement objects, such as TuningGoal.Tracking,
TuningGoal.StepTracking, or TuningGoal.Margins

systune tunes the tunable parameters of the control system to minimize the soft tuning
requirements. This tuning is subject to satisfying the hard tuning requirements (if any).

HardReqs — Hard tuning requirements (constraints)
[] (default) | vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning the control system, specified
as a vector of TuningGoal requirement objects, such as TuningGoal.Tracking,
TuningGoal.StepTracking, or TuningGoal.Margins.

systune converts each hard tuning requirement to a normalized scalar value.
systune then optimizes the free parameters minimize those normalized values. A hard
requirement is satisfied if the normalized value is less than 1.
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options — Options for tuning algorithm
systuneOptions object

Options for the tuning algorithm, specified as an options set you create with
systuneOptions. Available options include:

• Number of additional optimizations to run. Each optimization starts from random
initial values of the free parameters.

• Tolerance for terminating the optimization.
• Flag for using parallel processing.

Output Arguments

CL — Tuned control system
generalized state-space model

Tuned control system, returned as a generalized state-space (genss) model. This model
has the same number and type of tunable elements (Control Design Blocks) as CL0. The
current values of these elements are the tuned parameters. Use getBlockValue or
showTunable to access values of the tuned elements.

If you provide an array of control system models to tune as the input argument, CL0,
systune tunes the parameters of all the models simultaneously. In this case, CL is an
array of tuned genss models. For more information, see “Robust Tuning Using Multiple
Plant Models at Command Line”.

fSoft — Best achieved soft constraint values
vector

Best achieved soft constraint values, returned as a vector. systune converts the soft
requirements to a function of the free parameters of the control system. The command
then tunes the parameters to minimize that function subject to the hard constraints. (See
“Algorithms” on page 2-421.) fSoft contains the best achieved value for each of the
soft constraints. These values appear in fSoft in the same order that the constraints are
specified in SoftReqs. fSoft values are meaningful only when the hard constraints are
satisfied.

gHard — Best achieved hard constraint values
vector
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Best achieved hard constraint values, returned as a vector. systune converts the hard
requirements to a function of the free parameters of the control system. The command
then tunes the parameters to drive those values below 1. (See “Algorithms” on page
2-421.) gHard contains the best achieved value for each of the hard constraints. These
values appear in gHard in the same order that the constraints are specified in HardReqs.
If all values are less than 1, then the hard constraints are satisfied.

info — Detailed information about optimization runs
structure

Detailed information about each optimization run, returned as a data structure. In
addition to examining detailed results of the optimization, you can use info as an input
to viewSpec when validating a tuned MIMO system. info contains scaling data that
viewSpec needs for correct evaluation of MIMO open-loop requirements such as loop
shapes and stability margins.

The fields of info are:

Run — Run number
scalar

Run number, returned as a scalar. If you use the RandomStart option of
systuneOptions to perform multiple optimization runs, info is a struct array, and
info.Run is the index.

Iterations — Total number of iterations
scalar

Total number of iterations performed during run, returned as a scalar. This value is the
number of iterations performed in each run before the optimization terminates.

fBest — Best overall soft constraint value
scalar

Best overall soft constraint value, returned as a scalar. systune converts the soft
requirements to a function of the free parameters of the control system. The command
then tunes the parameters to minimize that function subject to the hard constraints. (See
“Algorithms” on page 2-421.) info.fBest is the maximum soft constraint value at the
final iteration. This value is meaningful only when the hard constraints are satisfied.

gBest — Best overall hard constraint value
scalar
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Best overall hard constraint value, returned as a scalar. systune converts the hard
requirements to a function of the free parameters of the control system. The command
then tunes the parameters to drive those values below 1. (See “Algorithms” on page
2-421.) info.gBest is the maximum hard constraint value at the final iteration. This
value must be less than 1 for the hard constraints to be satisfied.

fSoft — Individual soft constraint values
vector

Individual soft constraint values, returned as a vector. systune converts each soft
requirement to a normalized value that is a function of the free parameters of the control
system. The command then tunes the parameters to minimize that value subject to
the hard constraints. (See “Algorithms” on page 2-421.) info.fSoft contains the
individual values of the soft constraints at the end of each run. These values appear in
fSoft in the same order that the constraints are specified in SoftReqs.

gHard — Individual hard constraint values
vector

Individual hard constraint values, returned as a vector. systune converts each hard
requirement to a normalized value that is a function of the free parameters of the control
system. The command then tunes the parameters to minimize those values. A hard
requirement is satisfied if its value is less than 1. (See “Algorithms” on page 2-421.)
info.gHard contains the individual values of the hard constraints at the end of each
run. These values appear in gHard in the same order that the constraints are specified in
HardReqs.

MinDecay — Minimum decay rate of closed-loop poles
vector

Minimum decay rate of closed-loop poles, returned as a vector.

By default, closed-loop pole locations of the tuned system are constrained to satisfy Re(p)
< –10–7. Use the MinDecay option of systuneOptions to change this constraint.

Blocks — Tuned values of tunable blocks and parameters
structure

Tuned values of tunable blocks and parameters in the tuned control system, CL, returned
as a structure. You can also use getBlockValue or showBlockValue to access the
tuned parameter values.
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LoopScaling — Optimal diagonal scaling for MIMO tuning requirements
state-space model

Optimal diagonal scaling for evaluating MIMO tuning requirements, returned as a state-
space model.

When applied to multiloop control systems, TuningGoal.LoopShape and
TuningGoal.Margins can be sensitive to the scaling of the loop transfer functions
to which they apply. This sensitivity can lead to poor optimization results. systune
automatically corrects scaling issues and returns the optimal diagonal scaling matrix d
as a state-space model in info.LoopScaling.

The loop channels associated with each diagonal entry of D are listed in
info.LoopScaling.InputName. The scaled loop transfer is D\L*D, where L is the
open-loop transfer measured at the locations info.LoopScaling.InputName.

More About

Algorithms

x is the vector of tunable parameters in the control system to tune. systune converts
each soft and hard tuning requirement SoftReqs(i) and HardReqs(j) into normalized
values fi(x) and gj(x), respectively. systune then solves the minimization problem:

Minimize max

i
if x( )  subject to max

j
jg x( ) < 1 , for x x x

min max
< < .

xmin and xmax are the minimum and maximum values of the free parameters of the control
system.

systune returns the control system with parameters tuned to the values that best solve
the minimization problem. systune also returns the best achieved values of fi(x) and
gj(x), as fSoft and gHard respectively.

For information about the functions fi(x) and gj(x) for each type of constraint, see the
reference pages for each TuningGoal requirement object.

systune uses the nonsmooth optimization algorithms described in [1].



2 Alphabetical List

2-422

systune computes the H∞ norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.
• “Programmatic Control System Tuning”
• “Generalized Models”

References

[1] Apkarian, P. and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on
Automatic Control, Vol. 51, No. 1, (2006), pp. 71–86.

[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the H∞-Norm of a
Transfer Function Matrix," System Control Letters, Vol. 14, No, 4 (1990), pp. 287–
293.

See Also
TuningGoal.Tracking | TuningGoal.Gain | TuningGoal.Margins |
AnalysisPoint | genss | looptune | looptune (for slTuner) | slTuner |
systune (for slTuner) | systuneOptions | viewSpec

http://slicot.org
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systuneOptions
Set options for systune

Syntax

options = systuneOptions

options = systuneOptions(Name,Value)

Description

options = systuneOptions returns the default option set for the systune command.

options = systuneOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

systuneOptions takes the following Name arguments:

'Display'

Amount of information to display during systune runs.

Display takes the following values:

• 'final' — Display a one-line summary at the end of each optimization run. The
display includes the best achieved values for the soft and hard constraints, fSoft and
gHard. The display also includes the number of iterations for each run.
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• 'sub' — Display the result of each optimization subproblem.

When you designate some design goals as hard goals, the software divides the
optimization into subproblems. First, the software attempts to satisfy the hard goals.
Then, it attempts to minimize the soft goals, subject to remaining in a parameter-
space region in which the hard goals are satisfied. When you select 'sub', the report
includes the results of each of these subproblems.

• 'iter' — Display optimization progress after each iteration. The display includes
the value after each iteration of the objective parameter being minimized. The
objective parameter is whichever is larger of the hard constraints or the scaled soft
constraints. The display also includes a progress value that indicates the percent
change in the constraints from the previous iteration.

• 'off' — Run in silent mode, displaying no information during or after the run.

Default: 'final'

'MaxIter'

Maximum number of iterations in each optimization run, when the run does not converge
to within tolerance.

Default:  300

'RandomStart'

Number of additional optimizations starting from random values of the free parameters
in the controller.

If RandomStart = 0, systune performs a single optimization run starting from
the initial values of the tunable parameters. Setting RandomStart = N > 0 runs N
additional optimizations starting from N randomly generated parameter values.

systune tunes by finding a local minimum of a gain minimization problem. To increase
the likelihood of finding parameter values that meet your design requirements, set
RandomStart > 0. You can then use the best design that results from the multiple
optimization runs.

Use with UseParallel = true to distribute independent optimization runs among
MATLAB workers (requires Parallel Computing Toolbox software).

Default: 0
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'UseParallel'

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among
workers in a parallel pool. If there is an available parallel pool, then the software
performs independent optimization runs concurrently among workers in that pool. If no
parallel pool is available, one of the following occurs:

• If Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in
those preferences.

• If Automatically create a parallel pool is not selected in your preferences, then
the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can
manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.

Default: false

'SoftTarget'

Target value for soft constraints.

The optimization stops when the largest soft constraint value falls below the specified
SoftTarget value. The default value SoftTarget = 0 minimizes the soft constrains
subject to satisfying the hard constraints.

Default: 0

'SoftTol'

Relative tolerance for termination.

The optimization terminates when the relative decrease in the soft constraint value
decreases by less than SoftTol over 10 consecutive iterations. Increasing SoftTol
speeds up termination, and decreasing SoftTol yields tighter final values.

Default: 0.001
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'SoftScale'

A priori estimate of best soft constraint value.

For problems that mix soft and hard constraints, providing a rough estimate of the
optimal value of the soft constraints (subject to the hard constraints) helps to speed up
the optimization.

Default: 1

'MinDecay'

Minimum decay rate for closed-loop poles.

Constrains all closed-loop pole locations |p| to satisfy Re(p) < -MinDecay. Adjust
the minimum value if the optimization cannot meet the default minimum value, or
if the default minimum value conflicts with other requirements. For specifying other
constraints on the closed-loop pole locations, use TuningGoal.Poles.

Default: 1e-7

Output Arguments

options

Option set containing the specified options for the systune command.

Examples

Create Options Set for systune

Create an options set for a systune run using five random restarts. Also, set the display
level to show the progress of each iteration, and increase the relative tolerance of the soft
constraint value to 0.01.

options = systuneOptions('RandomStart',5,'Display','iter',...

                         'SoftTol',0.01);

Alternatively, use dot notation to set the values of options.
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options = systuneOptions;

options.RandomStart = 5;

options.Display = 'iter';

options.SoftTol = 0.01;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a systune run using 20 random restarts. Execute these
independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel
computing to speed up systune tuning of fixed-structure control systems. When you run
multiple randomized systune optimization starts, parallel computing speeds up tuning
by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences, manually start a parallel pool using parpool. For example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not
need to manually start a pool.

Create a systuneOptions set that specifies 20 random restarts to run in parallel.

options = systuneOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.

Use the systuneOptions set when you call systune. For example, suppose you have
already created a tunable control system model, CLO. For tuning this system, you have
created vectors SoftReqs and HardReqs of TuningGoal requirements objects. These
vectors represent your soft and hard constraints, respectively. In that case, the following
command uses parallel computing to tune the control system of CL0.

[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options);

See Also
| systune | systune (for slTuner)
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ucomplex
Create uncertain complex parameter

Syntax
A = ucomplex('NAME',nominalvalue)

A = ucomplex('NAME',nominalvalue,'Property1',Value1,... 

         'Property2',Value2,...)

Description
An uncertain complex parameter is used to represent a complex number whose value
is uncertain. Uncertain complex parameters have a name (the Name property), and a
nominal value (the NominalValue property).

The uncertainty (potential deviation from the nominal value) is described in two different
manners:

• Radius (radius of disc centered at NominalValue)
• Percentage (disc size is percentage of magnitude of NominalValue)

The Mode property determines which description remains invariant if the
NominalValue is changed (the other is derived). The default Mode is 'Radius' and the
default radius is 1.

Property/Value pairs can also be specified at creation. For instance,

B = ucomplex('B',6-j,'Percentage',25) 

sets the nominal value to 6-j, the percentage uncertainty to 25 and, implicitly, the Mode
to 'Percentage'.

Examples
Sample Uncertain Complex Parameter

Compute 400 random samples of an uncertain complex parameter and visualize them in
a plot.
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Create an uncertain complex parameter with internal name A.

A = ucomplex('A',4+3*j)

A =

  Uncertain complex parameter "A" with nominal value 4+3i and radius 1.

The uncertain parameter's possible values are a complex disc of radius 1, centered at 4
+ 3_j_. The value of A.percentage is 20 (radius is 1/5 of the magnitude of the nominal
value).

You can visualize the uncertain complex parameter by sampling and plotting the data.

sa = usample(A,400);

w = linspace(0,2*pi,200);

circ = sin(w) + j*cos(w);

rc = real(A.NominalValue+circ);

ic = imag(A.NominalValue+circ);

plot(real(sa(:)),imag(sa(:)),'o',rc,ic,'k-')

xlim([2.5 5.5])

ylim([1.5 4.5])

axis equal
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See Also
get | umat | ucomplexm | ureal | ultidyn
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ucomplexm

Create uncertain complex matrix

Syntax

M = ucomplexm('Name',NominalValue)

M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)

M = ucomplexm('Name',NominalValue,'Property',Value)

Description

M = ucomplexm('Name',NominalValue) creates an uncertain complex matrix
representing a ball of complex-valued matrices, centered at a NominalValue and named
Name.

M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)

creates an uncertain complex matrix with weights WL and WR. Specifically, the
values represented by M are all matrices H that satisfy norm(inv(M.WL)*(H -
M.NominalValue)*inv(M.WR)) <= 1. WL and WR are square, invertible, and
weighting matrices that quantify the size and shape of the ball of matrices represented
by this object. The default values for WL and WR are identity matrices of appropriate
dimensions.

Trailing Property/Value pairs are allowed, as in

M = ucomplexm('NAME',nominalvalue,'P1',V1,'P2',V2,...)

The property AutoSimplify controls how expressions involving the uncertain matrix
are simplified. Its default value is 'basic', which means elementary methods of
simplification are applied as operations are completed. Other values for AutoSimplify
are 'off'', no simplification performed, and 'full' which applies model-reduction-
like techniques to the uncertain object.
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Examples

Sample an Uncertain Complex Matrix

Create a ucomplexm with the name F, nominal value [1 2 3; 4 5 6], and weighting
matrices WL = diag([.1.3]), WR = diag([.4 .8 1.2]).

F = ucomplexm('F',[1 2 3;4 5 6],'WL',diag([.1 .3]),...

   'WR',diag([.4 .8 1.2]))

F =

  Uncertain complex matrix "F" with 2 rows and 3 columns.

Sample the difference between the uncertain matrix and its nominal value at 80 points,
yielding a 2-by-3-by-80 matrix typicaldev.

typicaldev = usample(F - F.NominalValue,80);

Plot histograms of the deviations in the (1,1) entry and the (2,3) entry of the complex
matrix.

The absolute values of the (1,1) entry and the (2,3) entry are shown by histogram plots.
Typical deviations in the (1,1) entry should be about 10 times smaller than the typical
deviations in the (2,3) entry.

subplot(2,1,1);

td11 = squeeze(typicaldev(1,1,:));

hist(abs(td11));

xlim([0 .25])

title('Sampled  F(1,1) - F(1,1).NominalValue')

subplot(2,1,2);

td23 = squeeze(typicaldev(2,3,:));

hist(abs(td23));

title('Sampled  F(2,3) - F(2,3).NominalValue')
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See Also
get | umat | ucomplex | ureal | ultidyn



2 Alphabetical List

2-434

ucover
Fit an uncertain model to set of LTI responses

Syntax

usys = ucover(Parray,Pnom,ord)

usys = ucover(Parray,Pnom,ord1,ord2,utype)

[usys,info] = ucover(Parray,...)

[usys_new,info_new] = ucover(Pnom,info,ord1_new,ord2_new)

Description

usys = ucover(Parray,Pnom,ord) returns an uncertain model usys with nominal
value Pnom and whose range of behaviors includes all responses in the LTI array
Parray. The uncertain model structure is of the form usys Pnom W s s= + ∆( )1 ( ) ( ) , where

• Δ is an ultidyn object that represents uncertain dynamics with unit peak gain.
• W is a stable, minimum-phase shaping filter that adjusts the amount of uncertainty

at each frequency.

ord is the number of states (order) of W. Pnom and Parray can be ss, tf, zpk, or zpk
models. usys is of class ufrd when Pnom is an frd model and is an uss model otherwise.

usys = ucover(Parray,Pnom,ord1,ord2,utype) specifies the order ord1 and ord2
of each diagonal entry of W1 and W2, where W1 and W2 are diagonal, stable, minimum-
phase shaping filters. utype specifies the uncertain model structure, as described
in “Uncertain Model Structures” on page 2-439, and can be 'InputMult' (default),
'OutputMult' or 'Additive'. ord1 and ord2 can be:

• [], which implies that the corresponding filter is 1.
• Scalar, which implies that the corresponding filter is scalar-valued.
• Vectors with as many entries as diagonal entries in W1 and W2.

[usys,info] = ucover(Parray,...) returns a structure info that contains
optimization information. info.W1opt and Info.W2opt contain the values of W1 and
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W2 computed on a frequency grid and info.W1 and info.W2 contain the fitted shaping
filters W1 and W2.

[usys_new,info_new] = ucover(Pnom,info,ord1_new,ord2_new) improves
the fit using initial filter values in info and new orders ord1_new and ord2_new of
W1 and W2. This syntax speeds up command execution by reusing previously computed
information. Use this syntax when you are changing filter orders in an iterative
workflow.

Examples

Fit Uncertain Model to Array of LTI Responses

Fit an uncertain model to an array of LTI responses. The responses might be, for
example, the results of multiple runs of acquisition of frequency response data from a
physical system.

For the purpose of this example, generate the frequency response data by creating an
array of LTI models and sampling the frequency response of those models.

Pnom = tf(2,[1 -2]);

p1 = Pnom*tf(1,[.06 1]);

p2 = Pnom*tf([-.02 1],[.02 1]);

p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);

array = stack(1,p1,p2,p3);

Parray = frd(array,logspace(-1,3,60));

The frequency response data in Parray represents three separate data acquisition
experiments on the system.

Plot relative errors between the nominal plant response and the three models in the LTI
array.

relerr = (Pnom-Parray)/Pnom;

bodemag(relerr)
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If you use a multiplicative uncertainty model structure, the magnitude of the shaping
filter should fit the maximum relative errors at each frequency.

Try a 1st-order shaping filter to fit the maximum relative errors.

[P,Info] = ucover(Parray,Pnom,1);

Plot the response to see how well the shaping filter fits the relative errors.

bodemag(relerr,'b--',Info.W1,'r',{0.1,1000});
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The plot shows that the filter W1 is too conservative and exceeds the maximum relative
error at most frequencies. To obtain a tighter fit, rerun the function using a 4th-order
filter.

[P,Info] = ucover(Parray,Pnom,4);

Evaluate the fit by plotting the Bode magnitude plot.

bodemag(relerr,'b--',Info.W1,'r',{0.1,1000});
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This plot shows that for the 4th-order filter, the magnitude of W1 closely matches the
minimum uncertainty amount.

Tutorials

• Modeling a Family of Responses as an Uncertain System
• Simultaneous Stabilization Using Robust Control
• First-Cut Robust Design
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More About

Uncertain Model Structures

When fitting the responses of LTI models in Parray, the gaps between Parray and the
nominal response Pnom of the uncertain model are modeled as uncertainty on the system
dynamics. To model the frequency distribution of these unmodeled dynamics, ucover
measures the gap between Pnom and Parray at each frequency and selects a shaping
filter W whose magnitude approximates the maximum gap between Pnom and Parray.
The following figure shows the relative gap between the nominal response and six LTI
responses, enveloped using a second-order shaping filter.

The software then sets the uncertainty to W · Δ, where Δ is an ultidyn object that
represents unit-gain uncertain dynamics. This ensures that the amount of uncertainty
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at each frequency is specified by the magnitude of W and therefore closely tracks the gap
between Pnom and Parray.

There are three possible uncertainty model structures:

• Input Multiplicative of the form usys = Pnom × (I + W1 × Δ ×W2).
• Output Multiplicative of the form usys = (I + W1 × Δ ×W2) × Pnom.
• Additive of the form usys = Pnom + W1 × Δ ×W2.

Use additive uncertainty to model the absolute gaps between Pnom and Parray, and
multiplicative uncertainty to model relative gaps.

Note For SISO models, input and output multiplicative uncertainty are equivalent. For
MIMO systems with more outputs than inputs, the input multiplicative structure may be
too restrictive and not adequately cover the range of models.

The model structure usys = Pnom × (I + W× Δ) that you obtain using usys =
ucover(Parray,Pnom,ord), corresponds to W1 = W × I and W1 = 1.

Algorithms

The ucover command designs the minimum-phase shaping filters W1 and W2 in two
steps:

1 Computes the optimal values of W1 and W2 on a frequency grid.
2 Fits W1 and W2 values with the dynamic filters of the specified orders using the

fitmagfrd command.

See Also
ss | tf | zpk | frd | usample
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udyn
Create unstructured uncertain dynamic system object

Syntax
n = udyn('name',iosize);

Description
n = udyn('name',iosize) creates an unstructured uncertain dynamic system class,
with input/output dimension specified by iosize. This object represents the class of
completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic
variables (placeholders). All algebraic operations, such as addition, subtraction, and
multiplication (i.e., cascade) operate properly, and substitution (with usubs) is allowed.

The analysis tools (e.g., robuststab) do not currently handle these types of uncertain
elements. Therefore, these elements do not provide a significant amount of usability, and
their role in the toolbox is small.

Examples
You can create a 2-by-3 udyn element and check its size and properties.

N = udyn('N',[2 3]) 

Uncertain Dynamic System: Name N, size 2x3 

size(N) 

ans = 

     2     3 

get(N) 

            Name: 'N' 

    NominalValue: [2x3 double] 

    AutoSimplify: 'basic' 

See Also
ureal | ultidyn | ucomplex | ucomplexm
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ufind

Find uncertain variables in Simulink model

Syntax

uvars = ufind('mdl')

[uvars,pathinfo] = ufind('mdl')

uvars = ufind(usys_1,usys_2,...)

Description

uvars = ufind ('mdl') finds Uncertain State Space blocks in the Simulink model
mdl. It returns a structure uvars that contains all uncertain variables associated with
the Uncertain State Space blocks. Each uncertain variable is a ureal or ultidyn object
and is listed by name in uvars.

[uvars,pathinfo] = ufind('mdl') returns a cell array pathinfothat contains
paths to the Uncertain State Space blocks and the corresponding uncertain variables
in the block. The first column of pathinfo lists the block paths through the model
hierarchy and the second column lists the uncertain variables associated with the block.
Use pathinfo to verify that all Uncertain State Space blocks in the model mdl have
been identified.

uvars = ufind(usys_1,usys_2,...) collects all uncertain variables referenced by
the uncertain model usys_n. usys_n can be uss or ufrd models. Use this syntax as an
alternative to querying the model itself, when you know the uncertain models that the
Uncertain State Space blocks use.

ufind can find Uncertain State Space blocks inside Masked Subsystems, Library Links,
and Model References but not inside Accelerated Model References. ufind errors out if
the same uncertain variable name has different definitions in the model. For example,
if your model contains two Uncertain State Space blocks where the uncertain system
variables define the same uncertain variable 'unc_par" as ultidyn('unc_par',[1
1]) and ureal('unc_par',5), such an error occurs.
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Examples

Find all Uncertain State Space blocks and uncertain variables in a Simulink model:

1 Open the Simulink model.

open_system('usim_model')

The model, as shown in the following figure, contains three Uncertain State
Space blocks named Unmodeled Plant Dynamics, Plant, and Sensor Gain. These
blocks depend on three uncertain variables named input_unc, unc_pole and
sensor_gain.

2 Use ufind to find all Uncertain State Space blocks and uncertain variables in the
model.

[uvars,pathinfo] = ufind('usim_model')

3 Type uvars to view the structure uvars. MATLAB returns the following result:

uvars = 

      input_unc: [1x1 ultidyn]

    sensor_gain: [1x1 ureal]

       unc_pole: [1x1 ureal]

Each uncertain variable is a ureal or ultidyn object and is listed by name in
uvars.

4 View the Uncertain State Space block paths and uncertain variables.
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a Type pathinfo(:,1) to view paths of the Uncertain State Space blocks in the
model. MATLAB returns the following result:

ans = 

    'usim_model/Plant'

    'usim_model/Sensor Gain'

    'usim_model/Unmodeled Plant Dynamics'

b Type pathinfo(:,2) to view the uncertain variables referenced by each
Uncertain State Space block. MATLAB returns the following results:

ans = 

    'unc_pole'

    'sensor_gain'

    'input_unc'

Tutorials

“Vary Uncertainty Values Using Individual Uncertain State Space Blocks”

“Vary Uncertainty Values Across Multiple Uncertain State Space Blocks”

Robustness Analysis in Simulink

How To

“Simulate Uncertainty Effects”

See Also
usample | Uncertain State Space
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ufrd

Uncertain frequency response data model

Syntax

ufrd_sys = ufrd(M,freqs)

ufrd_sys = ufrd(M,freqs,frequnits)

ufrd_sys = ufrd(M,freqs,frequnits,timeunits)

Description

Uncertain frequency response data models (ufrd) arise when combining numeric frd
models with uncertain models such as ureal, ultidyn, or uss. A ufrd model keeps
track of how the uncertain elements affect the frequency response. Use ufrd for robust
stability and worst-case performance analysis.

There are three ways to construct a ufrd model:

1 Combine numeric frd models with uncertain models using model arithmetic. For
example:

sys = frd(rand(100,1),logspace(-2,2,100));

k = ureal('k',1);

D = ultidyn('Delta',[1 1]);

ufrd_sys = k*sys*(1+0.1*D)

ufrd_sys is a ufrd model with uncertain elements k and D.
2 ufrd_sys = ufrd(M,freqs) converts the dynamic system model or static model M

to ufrd. If M contains Control Design Blocks that do not represent uncertainty, these
blocks are replaced by their current value. (To preserve both tunable and uncertain
Control Design Blocks, use genfrd instead.)

Use ufrd_sys = ufrd(M,freqs,frequnits) to specify the frequency units
of the frequencies in freqs with the string frequnits. Use ufrd_sys =
ufrd(M,freqs,frequnits,timeunits) to specify the time unit of ufrd_sys
when M is a static model.
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3 Use frd to construct a ufrd model from an uncertain matrix (umat) representing
uncertain frequency response data. For example:

a = ureal('delta',1,'percent',50);

freq = logspace(-2,2,100);

RespData = rand(1,1,100) * a;

usys = frd(RespData,freq,0.1)

Examples

Compute the uncertain frequency response of an uncertain system (uss model) with both
parametric uncertainty (ureal) and unmodeled dynamics uncertainty (ultidyn).

p1 = ureal('p1',5,'Range',[2 6]); 

p2 = ureal('p2',3,'Plusminus',0.4); 

p3 = ultidyn('p3',[1 1]); 

Wt = makeweight(.15,30,10); 

A = [-p1 0;p2 -p1]; 

B = [0;p2]; 

C = [1 1]; 

usys = uss(A,B,C,0)*(1+Wt*p3); 

usysfrd = ufrd(usys,logspace(-2,2,60)); 

Plot 20 random samples and the nominal value of the uncertain frequency response.

bode(usysfrd,'r',usysfrd.NominalValue,'b+') 

More About
• “Control Design Blocks”

See Also
frd | ss | uss | genfrd
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ulinearize
Linearize Simulink model with Uncertain State Space block

Syntax
ulin = ulinearize('sys',io)

ulin = ulinearize('sys',op,io)

ulin = ulinearize('sys',op,io,options)

ulin = ulinearize('sys',op)

ulin_block = ulinearize('sys',op,'blockname')

[ulin,op] = ulinearize('sys',snapshottimes,...);

ulin = ulinearize('sys','StateOrder',stateorder)

Description

ulin = ulinearize('sys',io) linearizes the Simulink model sys that contains
Uncertain State Space blocks and returns a linear time-invariant uncertain system
ulin. ulin is an uss object. io is an I/O object that specifies linearization I/O points
in the model. Use getlinio or linio to create io. The linearization occurs at the
operating point specified in the model.

ulin=ulinearize('sys',io,op) linearizes the model at the operating point specified
in the operating point object op. Use operpoint or findop to create op. Both op and io
are associated with the same model sys.

ulin=ulinearize('sys',io,op,options) takes a linearization options object
options that contains several options for linearization and returns linear time-invariant
uncertain system ulin. Use linearizeOptions to create options.

ulin=ulinearize('sys',op) linearizes the model sys at the operating point specified
in the operating point object op. The software uses root-level inport and outport blocks in
sys as I/O points for linearization.
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ulin_block=ulinearize('sys',op,'blockname',...) takes the name of a block
blockname in the model sys and returns a linear time-invariant uncertain system
ulin_block. You can also specify a fourth argument options to provide options for the
linearization.

[ulin,op] = ulinearize('sys',snapshottimes,...) creates operating points
for linearization by simulating the model and taking snapshots of the system's states
and inputs at times specified in the vector snapshottimes. ulin is a set of linear
time-invariant uncertain systems and op is the set of operating point objects used in
linearization. You can also specify I/O object for linearization, or a block name. If you
do not specify an I/O object or block name, the linearization uses root-level inport and
outport blocks in the model. You can also supply an additional argument, options, to
provide options for linearization.

ulin = ulinearize('sys','StateOrder',stateorder) creates a linear-time-
invariant uncertain system ulin, whose states are in a specified order. Specify the state
order in the cell array stateorder by entering the names of the blocks containing
states in the model. For all blocks, you can enter block names as the full block path. For
continuous blocks, you can alternatively enter block names as the user-defined unique
state name.

Examples

Compute uncertain linearization of a Simulink model containing Uncertain State Space
blocks:

% Define uncertain variables and uncertain system variables 

% to use in Uncertain State Space blocks.

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);

plant = ss(unc_pole,5,1,0);

wt = makeweight(0.25,130,2.5);

input_unc = ultidyn('input_unc',[1 1]);

sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);

sensor = tf(1,[1/(-sensor_pole) 1]);

% Open Simulink model. The model contains three Uncertain State 

% Space blocks named Unmodeled Plant Dynamics, Uncertain Plant and

% Uncertain Sensor, and linearization I/O points.

open_system('rct_ulinearize_uss')

% Obtain linearization I/O points.
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mdl = 'rct_ulinearize_uss';

io = getlinio(mdl);

% Compute the uncertain linearization of the model.

ulin = ulinearize(mdl,io)

% MATLAB returns an uss object with 5 states.

Tutorials

“Linearize Block to Uncertain Model”

Linearization of Simulink Models with Uncertainty

How To

“Obtain Uncertain State-Space Model from Simulink Model”

See Also
ureal | udyn | ultidyn | uss
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ultidyn

Create uncertain linear time-invariant object

Syntax

H = ultidyn('Name',iosize)

H = ultidyn('Name',iosize,'Property1',Value1,'Property2',Value2,...)

Description

H = ultidyn('Name',iosize) creates an uncertain linear, time-invariant objects are
used to represent unknown dynamic objects whose only known attributes are bounds on
their frequency response. Uncertain linear, time-invariant objects have a name (the Name
property), and an input/output size (ioSize property).

The property Type is 'GainBounded' (default) or 'PositiveReal', and describes in
what form the knowledge about the object's frequency response is specified.

• If Type is 'GainBounded', then the knowledge is an upper bound on the magnitude
(i.e., absolute value), namely abs(H)<= Bound at all frequencies. The matrix
generalization of this is ∥H∥<= Bound.

• If Type is 'PositiveReal' then the knowledge is a lower bound on the real part,
namely Real(H) >= Bound at all frequencies. The matrix generalization of this is H
+H' >= 2*Bound

The property Bound is a real, scalar that quantifies the bound on the frequency response
of the uncertain object as described above.

Trailing Property/Value pairs are allowed in the construction.

H=ultidyn('name',iosize,'Property1',Value1,'Property2',Value2,...)

The property SampleStateDim is a positive integer, defining the state dimension of
random samples of the uncertain object when sampled with usample. The default value
is 1.
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The property AutoSimplify controls how expressions involving the uncertain matrix
are simplified. Its default value is 'basic', which means elementary methods of
simplification are applied as operations are completed. Other values for AutoSimplify
are 'off', no simplification performed, and 'full' which applies model-reduction-like
techniques to the uncertain object.

Examples

MIMO Uncertain Dynamics

Create an ultidyn object with internal name 'H', dimensions 2-by-3, norm bounded
by 7.

H = ultidyn('H',[2 3],'Bound',7) 

Uncertain GainBounded LTI Dynamics: Name H, 2x3, Gain Bound = 7 

Nyquist Plot of Uncertain Dynamics

Create a scalar ultidyn object with an internal name 'B', whose frequency response
has a real part greater than 2.5.

B = ultidyn('B',[1 1],'Type','PositiveReal','Bound',2.5)

B =

  Uncertain LTI dynamics "B" with 1 outputs, 1 inputs, and positive real bound of 2.5.

Change the SampleStateDim to 5, and plot the Nyquist plot of 30 random samples.

B.SampleStateDim = 5;

nyquist(usample(B,30))
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See Also
get | ureal | uss
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umat

Create uncertain matrix

Syntax

M = umat(A)

Description

Uncertain matrices are rational expressions involving uncertain elements of type ureal,
ucomplex, or ucomplexm. Use uncertain matrices for worst-case gain analysis and for
building uncertain state-space (uss) models.

Create uncertain matrices by creating uncertain elements and combining them using
arithmetic and matrix operations. For example:

 p = ureal('p',1);

 M = [0 p; 1 p^2]

creates a 2-by-2 uncertain matrix (a umat object) with the uncertain parameter p.

The syntax M = umat(A) converts the double array A to a umat object with no
uncertainty.

Most standard matrix manipulations are valid on uncertain matrices, including addition,
multiplication, inverse, horizontal and vertical concatenation. Specific rows/columns of
an uncertain matrix can be referenced and assigned also.

If M is a umat, then M.NominalValue is the result obtained by replacing each uncertain
element in M with its own nominal value.

If M is a umat, then M.Uncertainty is an object describing all the uncertain elements
in M. All element can be referenced and their properties modified with this Uncertainty
gateway. For instance, if B is an uncertain real parameter in M, then M.Uncertainty.B
accesses the uncertain element B in M.
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Examples

Create 3 uncertain elements and then a  3-by-2 umat.

a = ureal('a',5,'Range',[2 6]); 

b = ucomplex('b',1+j,'Radius',0.5); 

c = ureal('c',3,'Plusminus',0.4); 

M = [a b;b*a 7;c-a b^2] 

M is an uncertain matrix (umat object) with the uncertain parameters a, b, and c.

View the properties of M with get

get(M) 

The nominal value of M is the result when all atoms are replaced by their nominal values.

M.NominalValue 

ans = 

   5.0000             1.0000 + 1.0000i 

   5.0000 + 5.0000i   7.0000          

  -2.0000                  0 + 2.0000i 

Change the nominal value of a within M to 4. The nominal value of M reflects this change.

M.Uncertainty.a.NominalValue = 4; 

M.NominalValue 

ans = 

   4.0000             1.0000 + 1.0000i 

   4.0000 + 4.0000i   7.0000          

  -1.0000                  0 + 2.0000i 

Get a random sample of M, obtained by taking random samples of the uncertain atoms
within M.

usample(M) 

ans = 

   2.0072             0.8647 + 1.3854i 

   1.7358 + 2.7808i   7.0000          

   1.3829            -1.1715 + 2.3960i 

Select the 1st and 3rd rows, and the 2nd column of M. The result is a 2-by-1 umat, whose
dependence is only on b.

M([1 3],2)  
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See Also
ureal | ultidyn | ucomplex | ucomplexm | usample
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uplot
Plot multiple frequency response objects and doubles on same graph

Syntax
uplot(G1)

uplot(G1,G2)

uplot(G1,Xdata,Ydata)

uplot(G1,Xdata,Ydata,...)

uplot(G1,linetype)

uplot(G1,linetype,G2,...)

uplot(G1,linetype,Xdata,Ydata,linetype)

uplot(type,G1,linetype,Xdata,Ydata,linetype)

H = uplot(G1)

H = uplot(G1,G2)

H = uplot(G1,Xdata,Ydata)

H = uplot(G1,Xdata,Ydata,...)

H = uplot(G1,linetype)

H = uplot(G1,linetype,G2,...)

H = uplot(G1,linetype,Xdata,Ydata,linetype)

Description

uplot plots double and frd objects. The syntax is the same as the MATLAB plot
command except that all data is contained in frd objects, and the axes are specified by
type.
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The (optional) type argument must be one of

Type Description

'iv,d' Data versus independent variable (default)
'iv,m' Magnitude versus independent variable
'iv,lm' log(magnitude) versus independent variable
'iv,p' Phase versus independent variable
'liv,m' Magnitude versus log(independent variable)
'liv,d' Data versus log(independent variable)
'liv,m' Magnitude versus log(independent variable)
'liv,lm' log(magnitude) versus log(independent variable)
'liv,p' Phase versus log(independent variable)
'r,i' Real versus imaginary (parametrize by independent variable)
'nyq' Real versus imaginary (parametrize by independent variable)
'nic' Nicholas plot
'bode' Bode magnitude and phase plot

The remaining arguments of uplot take the same form as the MATLAB plot command.
Line types (for example,'+', 'g-.', or '*r') can be optionally specified after any
frequency response argument.

There is a subtle distinction between constants and frd objects with only one
independent variable. A constant is treated as such across all frequencies, and
consequently shows up as a line on any graph with the independent variable as an axis.
A frd object with only one frequency point always shows up as a point. You might need
to specify one of the more obvious point types in order to see it (e.g., '+', 'x', etc.).

Examples

Plot Multiple Frequency Responses

Create two SISO second-order systems, and calculate their frequency responses over
different frequency ranges.
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a1 = [-1,1;-1,-0.5];

b1 = [0;2]; c1 = [1,0]; d1 = 0;

sys1 = ss(a1,b1,c1,d1);

a2 = [-.1,1;-1,-0.05];

b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1;

sys2 = ss(a2,b2,c2,d2);

omega = logspace(-2,2,100);

sys1g = frd(sys1,omega);

omega2 = [ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ];

omega2 = sort(omega2);

sys2g = frd(sys2,omega2);

Create an frd object with a single frequency.

sys3 = rss(1,1,1);

rspot = frd(sys3,2);

The following plot uses the plot_type specification 'liv,lm'.

uplot('liv,lm',sys1g,'b-.',rspot,'r*-',sys2g);

xlabel('log independent variable')

ylabel('log magnitude')

title('axis specification: liv,lm')
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See Also
bode | plot | nichols | nyquist | semilogx | semilogy | sigma
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ureal
Create uncertain real parameter

Syntax
p = ureal('name',nominalvalue)

p = ureal('name',nominalvalue,'Property1',Value1,...

'Property2',Value2,...)

Description

An uncertain real parameter is used to represent a real number whose value is
uncertain. Uncertain real parameters have a name (the Name property), and a nominal
value (NominalValue property).

The uncertainty (potential deviation from NominalValue) is described (equivalently) in
3 different properties:

• PlusMinus: the additive deviation from NominalValue
• Range: the interval containing NominalValue
• Percentage: the percentage deviation from NominalValue

The Mode property specifies which one of these three descriptions remains unchanged
if the NominalValue is changed (the other two descriptions are derived). The possible
values for the Mode property are 'Range', 'Percentage' and 'PlusMinus'.

The default Mode is 'PlusMinus', and [-1 1] is the default value for the
'PlusMinus' property. The range of uncertainty need not be symmetric about
NominalValue.

The property AutoSimplify controls how expressions involving the uncertain matrix
are simplified. Its default value is 'basic', which means elementary methods of
simplification are applied as operations are completed. Other values for AutoSimplify
are 'off'', no simplification performed, and 'full', which applies model-reduction-
like techniques to the uncertain object.
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Examples

Example 1

Create an uncertain real parameter and use get to display the properties and their
values. Create uncertain real parameter object a with the internal name 'a' and
nominal value 5.
a = ureal('a',5) 

Uncertain Real Parameter: Name a, NominalValue 5, variability = [-1  1]

get(a) 

            Name: 'a' 

    NominalValue: 5 

            Mode: 'PlusMinus' 

           Range: [4 6] 

       PlusMinus: [-1 1] 

      Percentage: [-20 20] 

    AutoSimplify: 'basic' 

Note that the Mode is 'PlusMinus', and that the value of PlusMinus is indeed [-1
1]. As expected, the range description of uncertainty is [4 6], while the percentage
description of uncertainty is [-20 20].

Set the range to [3 9]. This leaves Mode and NominalValue unchanged, but all three
descriptions of uncertainty have been modified.

a.Range = [3 9]; 

get(a) 

            Name: 'a' 

    NominalValue: 5 

            Mode: 'PlusMinus' 

           Range: [3 9] 

       PlusMinus: [-2 4] 

      Percentage: [-40 80] 

    AutoSimplify: 'basic' 

Example 2

Property/Value pairs can also be specified at creation.

b = ureal('b',6,'Percentage',[-30 40],'AutoSimplify','full'); 

get(b) 

            Name: 'b' 

    NominalValue: 6 
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            Mode: 'Percentage' 

           Range: [4.2000 8.4000] 

       PlusMinus: [-1.8000 2.4000] 

      Percentage: [-30.0000 40.0000] 

    AutoSimplify: 'full' 

Note that Mode is automatically set to 'Percentage'.

Example 3

Specify the uncertainty in terms of percentage, but force Mode to 'Range'.

c = ureal('c',4,'Mode','Range','Percentage',25); 

get(c) 

            Name: 'c' 

    NominalValue: 4 

            Mode: 'Range' 

           Range: [3 5] 

       PlusMinus: [-1 1] 

      Percentage: [-25 25] 

    AutoSimplify: 'basic' 

See Also
ucomplex | umat | uss
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uss/usample
Generate random samples of uncertain object

Syntax
B = usample(A);

B = usample(A,N)

[B,SampleValues] = usample(A,N)

[B,SampleValues] = usample(A,Names,N)

[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...)

[B,SampleValues] = usample(A,N,Wmax)

[B,SampleValues] = usample(A,Names,N,Wmax)

Description

B = usample(A) substitutes a random sample of the uncertain objects in A, returning a
certain (i.e., not uncertain) array of size [size(A)].

B = usample(A,N) substitutes N random samples of the uncertain objects in A,
returning a certain (i.e., not uncertain) array of size [size(A) N].

[B,SampleValues] = usample(A,N) additionally returns the specific sampled
values (as a Struct whose field names are the names of A's uncertain elements) of the
uncertain elements. Hence, B is the same as usubs(A,SampleValues).

[B,SampleValues] = usample(A,Names,N) samples only the uncertain
elements listed in the Names variable (cell, or char array). If Names does not
include all the uncertain objects in A, then B will be an uncertain object. Any
entries of Names that are not elements of A are simply ignored. Note that
usample(A,fieldnames(A.Uncertainty),N) is the same as usample(A,N).

[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...) takes N1 samples of
the uncertain elements listed in Names1, and N2 samples of the uncertain elements listed
in Names2, and so on. size(B) will equal [size(A) N1 N2 ...].
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The scalar parameter Wmax in

[B,SampleValues] = usample(A,N,Wmax)

[B,SampleValues] = usample(A,Names,N,Wmax) 

[B,SampleValues] = usample(A,Names,N,Wmax)

affects how ultidyn elements within A are sampled, restricting the poles of the samples.
If A is a continuous-time uss or ufrd, then the poles of sampled GainBounded ultidyn
elements in SampleValues will each have magnitude <= BW. If A is a discrete-time,
then sampled GainBounded ultidyn elements are obtained by Tustin transformation,
using BW/(2*TS) as the (continuous) pole magnitude bound. In this case, BW should be
< 1. If the ultidyn type is PositiveReal, then the samples are obtained by bilinearly
transforming (see “Normalizing Functions for Uncertain Elements”) the GainBounded
elements described above.

Examples
Sample Real Parameter

Create a real uncertain parameter, sample it, and plot a histogram of the sampled
values.

A = ureal('A',5);

Asample = usample(A,500);

Examine the size of the parameter and the sample array.

size(A)

Uncertain real scalar.

size(Asample)

ans =

     1     1   500

A is a scalar parameter. The dimensions of Asample reflect that A is a 1-by-1 parameter.
Examine the data type of Asample.

class(Asample)
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ans =

double

The samples of the scalar parameter are numerical values.

Plot the histogram of sampled values.

hist(Asample(:))

Sample Responses of Uncertain Control System Model

This example illustrates how to sample the open and closed-loop response of an uncertain
plant model for Monte Carlo analysis.
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Create two uncertain real parameters and an uncertain plant.

gamma = ureal('gamma',4);

tau = ureal('tau',.5,'Percentage',30);

P = tf(gamma,[tau 1]);

Create an integral controller based on the nominal values of plant uncertainties.

KI = 1/(2*tau.Nominal*gamma.Nominal);

C = tf(KI,[1 0]);

Now create an uncertain closed-loop system.

CLP = feedback(P*C,1);

Sample the plant at 20 values, distributed uniformly about the tau and gamma
parameter cube.

[Psample1D,Values1D] = usample(P,20);

size(Psample1D)

20x1 array of state-space models.

Each model has 1 outputs, 1 inputs, and 1 states.

This sampling returns an array of 20 state-space models, each representing the closed-
loop system within the uncertainty.

Now sample the plant at 10 values of tau and 15 values of gamma.

[Psample2D,Values2D] = usample(P,'tau',10,'gamma',15);

size(Psample2D)

10x15 array of state-space models.

Each model has 1 outputs, 1 inputs, and 1 states.

Plot the step responses of the 1-D sampled plant.

subplot(2,1,1);

step(Psample1D)
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Evaluate the uncertain closed-loop model at the same values using usubs, and plot the
step response.

subplot(2,1,2);

step(usubs(CLP,Values1D))
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Restrict Pole Locations in Sampled Uncertain Dynamics

To see the effect of limiting the bandwidth of sampled models with Wmax, create two
ultidyn objects.

A = ultidyn('A',[1 1]);

B = ultidyn('B',[1 1]);

Sample 10 instances of each, using a bandwidth limit of 1 rad/sec on A, and 20 rad/sec on
B.

Npts = 10;

As = usample(A,Npts,1);

Bs = usample(B,Npts,20);
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Plot 10-second step responses, for the two sample sets.

step(As,'r',Bs,'b--',10)

The lower bandwith limit on the samples of A results in generally slower step responses
for those samples.

See Also
usample | usubs | ufind | ureal | ucomplex | ultidyn | umat | ufrd | uss
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usample

Generate random samples of uncertain variables

Syntax

samples = usample(uvars,N)

samples = usample(uvars)

samples = usample(uvars,N,Wmax)

Description

samples = usample(uvars,N) generates N random samples of the uncertain variables
in uvars. uvars is a structure that lists uncertain variables (ureal, ucomplex or
ultidyn) by name. You can automatically obtain uvars for a Simulink model that
contains Uncertain State Space blocks using ufind. samples is an N-by-1 structure
array whose field names and values are the names and sample values of the uncertain
variables. Use this syntax, together with ufind, to generate random samples for
uncertain variables in Simulink models.

samples = usample(uvars) is equivalent to usample(uvars,1).

samples = usample(uvars,N,Wmax) specifies constraints, as described in uss/
usample, for sampling uncertain variables of type ultidyn in uvars.

Examples

Example 1

Generate random samples of uncertain variables:

% Create a structure that contains uncertain variables a and % b.
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uvars = struct('a',ureal('a',5),'b',ultidyn('b',[2 3],'Bound',7))

% Use usample to generate random values of a and b.

samples = usample(uvars)

Sample Uncertain Variables in a Simulink® Model

Generate random samples of uncertain variables in a Simulink® model.

Open the model.

open_system('usim_model')

The model contains three Uncertain State Space blocks named Unmodeled Plant
Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain variables
named input_unc, unc_pole, and sensor_gain.

Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.

uvars = ufind('usim_model');
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Use usample to generate random samples of input_unc, unc_pole, and sensor_gain.
Simulate the closed-loop response for each of these random samples.

for i=1:10;

   uval = usample(uvars);

    sim('usim_model',10);

end
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The MultiPlot Graph block displays the simulated responses.

Tutorials

“Vary Uncertainty Values Using Individual Uncertain State Space Blocks”

“Vary Uncertainty Values Across Multiple Uncertain State Space Blocks”

Robustness Analysis in Simulink

How To

“Simulate Uncertainty Effects”
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See Also
ufind | usubs | ureal | ucomplex | umat | ufrd | uss | ultidyn
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usimfill

Helper function for USS System blocks to set "User-defined Uncertainty" field or state of
"Uncertainty value" menu

Note usimfill will be removed in a future release. Use ufind instead.

Syntax

usimfill(ModelName,str)

usimfill(ModelName,'Uncertainty value','Nominal')

usimfill(ModelName,'Uncertainty value','User defined')

Description

The command usimfill allows simple control of some parameters of all USS System
blocks in a Simulink model.

usimfill(ModelName,str) pushes the string in str into the Uncertainty value
name field of all USS System blocks in the Simulink model specified by ModelName.

usimfill(ModelName,'Uncertainty value','Nominal') sets the Uncertainty
value pulldown menu to Nominal for all USS System blocks in the Simulink model
specified by ModelName. Only a limited number of characters are needed to make this
specification, so usimfill(ModelName,'U','N') accomplishes the same effect.

usimfill(ModelName,'Uncertainty value','User defined') sets the
Uncertainty value pulldown menu to User defined for all USS System blocks in
the Simulink model specified by ModelName. Only a limited number of characters are
needed to make this specification, so usimfill(ModelName,'U','U') accomplishes
the same effect.
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Examples

See Robustness Analysis in Simulink for a more detailed example of how to use
usimfill.

Open the model file associated with the example.

open_system('usim_model'); 

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]); 

plant = ss(unc_pole,5,1,1); 

input_unc = ultidyn('input_unc',[1 1]); 

wt = makeweight(0.25,130,2.5); 

sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]); 

This has three USS System blocks. They are plant with a ureal atom named unc_pole;
input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimfill on the model, filling in the field with the string 'newData'.

usimfill('usim_model','newData'); 

View all of the dialog boxes, and see that the string 'newData' has been entered.

Run usimfill on the model, changing the Uncertainty Selection to Nominal.

usimfill('usim_model','Uncertainty value','Nominal'); 

Similarly run usimfill on the model, changing the Uncertainty Selection to User
Specified Uncertainty.

usimfill('usim_model','Uncertainty value','User defined'); 

Now generate a random sample of the uncertain atoms, and run the simulation

newData = usimsamp('usim_model',120); 

sim('usim_model'); 

See Also
usample | usiminfo | usimsamp | usubs
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usiminfo
Find USS System blocks within specified Simulink model and check for consistency

Note usiminfo will be removed in a future release. Use ufind instead.

Syntax
[cflags,allupaths,allunames,upaths,unames,csumchar]

= usiminfo(sname, silent)

Description

The command usiminfo returns information regarding the locations of all USS System
blocks within a Simulink model and determines if these conpatiblilty conditions are
satisfied. It is possible to have uncertain objects of the same name through out a
Simulink model. The helper functions usimsamp and usimfill assume that these
are the same uncertainty. Hence uncertain objects of the same name should have the
same object properties and Uncertainty value in the USS System pull-down menu.
usiminfo provides information about the uncertainty in the Simulink diagram sname.

The following describes the input and outputs arguments of usiminfo:

Input Arguments Description

sname Simulink diagram name
silent Display inconsistencies between uncertain atoms, when not empty.

Default is empty.

Output Arguments Description

cflag Compatibility flag set to 1 if all uncertainties are consistent,
set to 0 if an uncertainty definition(s) is consistent and set to
–1 if common uncertainties in different blocks have different
Uncertainty value.
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Output Arguments Description

allupaths Path names of USS System blocks in the model (cell).
allunames Uncertainties names in Simulink model (cell).
upaths Path names associated with each allunames entry (cell).
unames Uncertainty names associated with each allupaths entry (cell).
csumchar Character array with description of uncertainties and their

associated block path names. Empty if there is a conflict with
unames.

See Also
usample | usimfill | usimsamp | usubs
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usimsamp
Generate random instance of all uncertain atoms present in all USS System blocks of
Simulink model

Note usimsamp will be removed in a future release. Use usample instead.

Syntax
sample = usimsamp(ModelName)

sample = usimsamp(ModelName,BW)

Description

The command usimsamp samples a Simulink model. Note that if the model contains
any USS System blocks, then the model can be interpreted as an uncertain Simulink
model. The sample generated by usimsamp is a scalar structure, with fieldnames
corresponding to the uncertain atoms within all of the USS System blocks, and the
values are specific random samples of the atoms.

For ultidyn atoms, the magnitude of the sampled poles can be limited using an optional
second bandwidth argument, BW. See usample for more information on this parameter.

Examples

See Robustness Analysis in Simulink for a more detailed example of how to use
usimsamp.

Open the model file associated with the example.

open_system('usim_model'); 

This has 3 USS System blocks. They are plant with a ureal atom named unc_pole;
input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.
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Run usimsamp on the model, yielding a structure as described above.

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]); 

plant = ss(unc_pole,5,1,1); 

input_unc = ultidyn('input_unc',[1 1]); 

wt = makeweight(0.25,130,2.5); 

sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]); 

data = usimsamp('usim_model') 

data = 

      input_unc: [1x1 ss] 

    sensor_gain: 0.9935 

       unc_pole: -4.1308 

See Also
usample | usimfill | usiminfo | usubs
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uss
Specify uncertain state-space models or convert LTI model to uncertain state-space
model

Syntax
usys = uss(a,b,c,d)

usys = uss(a,b,c,d,Ts)

usys = uss(d)

usys = uss(a,b,c,d,Property,Value,...)

usys = uss(a,b,c,d,Ts,Property,Value,...)

usys = uss(sys)

Description

uss creates uncertain state-space models (uss objects) or to convert LTI models to the
uss class.

usys = uss(a,b,c,d) creates a continuous-time uncertain state-space object. The
matrices a, b, c and d can be umat and/or double and/or uncertain atoms. These
are the 4 matrices associated with the linear differential equation model to describe the
system.

usys = uss(a,b,c,d,Ts) creates a discrete-time uncertain state-space object with
sample time Ts.

usys = uss(d) specifies a static gain matrix and is equivalent to usys = uss([],[],
[],d).

Any of these syntaxes can be followed by property name/property value pairs.

usys = uss(a,b,c,d,'P1',V1,'P2',V2,...) set the properties P1, P2, ... to
the values V1, V2, ...
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usys = uss(sys) converts an arbitrary ss, tf or zpk model sys to an uncertain
state-space object without uncertainties. Both usys.NominalValue and
simplify(usys,'class') are the same as ss(sys).

Examples

You can first create two uncertain atoms and use them to create two uncertain matrices.
These four matrices can be packed together to form a 1-output, 1-input, 2-state
continuous-time uncertain state-space system.

p1 = ureal('p1',5,'Range',[2 6]); 

p2 = ureal('p2',3,'Plusminus',0.4); 

A = [-p1 0;p2 -p1]; 

B = [0;p2]; 

C = [1 1]; 

usys = uss(A,B,C,0); 

In the second example, you can convert a not-uncertain tf model to an uncertain state-
space model without uncertainties. You can verify the equality of the nominal value of
the usys object and simplified representation to the original system.

G = tf([1 2 3],[1 2 3 4]); 

usys = uss(G) 

USS: 3 States, 1 Output, 1 Input, Continuous System 

isequal(usys.NominalValue,ss(G)) 

ans = 

     1 

isequal(simplify(usys,'class'),ss(G)) 

ans = 

     1 

See Also
frd | ss
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usubs
Substitute given values for uncertain elements of uncertain objects

Syntax

B = usubs(M,ElementName1,value1,ElementName2,value2,...)

B = usubs(M,S)

B = usubs(M,...,'-once')

B = usubs(M,...,'-batch')

Description

Use usubs to substitute a specific value for an uncertain element of an uncertain model
object. The value can itself be uncertain. It needs to be the correct size, but otherwise
can be of any class, and can be an array. Hence, the result can be of any class. In this
manner, uncertain elements act as symbolic placeholders, for which specific values
(which can also contain other placeholders too) can be substituted.

B = usubs(M,ElementName1,value1,ElementName2,value2,...) sets the
elements in M, identified by ElementName1, ElementName2, etc., to the values in
value1, value2, etc. respectively.

Any value can also be the string 'NominalValue' or 'Random' (or only partially
specified) in which case the nominal value, or a random instance of the atom is used.

B = usubs(M,S) instantiates the uncertain elements of M to the values specified in the
structure S. The field names of S are the names of the uncertain elements to replace.
The values are the corresponding replacement values. To provide several replacement
values, make S a struct array, where each struct contains one set of replacement values.
A structure such as S typically comes from robustness analysis commands such as
robuststab, usample, or wcgain.

B = usubs(M,...,'-once') performs vectorized substitution in the uncertain model
array M. Each uncertain element is replaced by a single value, but this value may change
across the model array. To specify different substitute values for each model in the array
M, use:



2 Alphabetical List

2-484

• A cell array for each valueN that causes the uncertain element ElementNameN in
M(:,:,k) to be replaced by valueN(k). For example, if M is a 2-by-3 array, then a
2-by-3 cell array value1 replaces ElementName1 of the model M(:,:,k) with the
corresponding value1(k).

• A struct array S that specifies one set of substitute values S(k) for each model
M(:,:,k).

Numeric array formats are also accepted for value1,value2,.... For example, value1
can be a 2-by-3 array of LTI models, a numeric array of size [size(name1) 2 3], or a
2-by-3 matrix when the uncertain element name1 is scalar-valued. The array sizes of M,
S, value1,value2,... must agree along non-singleton dimensions. Scalar expansion
takes place along singleton dimensions.

Vectorized substitution ('-once') is the default for model arrays when no substitution
method is specified.

B = usubs(M,...,'-batch') performs batch substitution in the uncertain model
array M. Each uncertain element is replaced by an array of values, and the same values
are used for all models in M. In batch substitution, B is a model array of size [size(M)
VS], where VS is the size of the array of substitute values.

Examples

Evaluate Uncertain Matrix for Multiple Values of Uncertain Parameters

Evaluate an uncertain matrix at several different values of the uncertain parameters of
the matrix.

Create an uncertain matrix with two uncertain parameters.

a = ureal('a',5);

b = ureal('b',-3);

M = [a b];

Evaluate the matrix at four different combinations of values for the uncertain
parameters a and b.

B = usubs(M,'a',[1;2;3;4],'b',[10;11;12;13]);
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This command evaluates M for the four different (a, b) combinations (1,10), (2,11), and so
on. Therefore, B is a 1-by-2-by-4 array of numeric values containing the four evaluated
values of M.

Evaluate Uncertain Matrix over Grid of Uncertain Parameters

Evaluate an uncertain matrix over a 3-by-4 grid of values of the uncertain parameters of
the matrix.

Create a 2-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);

b = ureal('b',-3);

M = [a b;0 a*b];

Build arrays of values for the uncertain parameters.

aval = [1;2;3;4];

bval = [10;20;30];

[as,bs] = ndgrid(aval,bval);

This command builds two 4-by-3 grids of values.

Evaluate M over the parameter grids A and B.

B = usubs(M,'a',as,'b',bs);

This command evaluates M for each four different combination of values (A(k),B(k)). B
is a 2-by-2-by-4-by-3 array of numeric values, which is a 4-by-3 array of values of M, i.e., M
evaluated over the parameter grids.

Instantiate Uncertain Parameter by Batch Substitution of Parameter for Array of Values

Evaluate an array of uncertain models, substituting an array of values for an uncertain
parameter.

Create a 1-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);

b = ureal('b',-3);

M = [a b];

Replace a by each of the values 1, 2, 3, and 4.
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Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one
uncertain parameter b.

For each model in the array Ma, evaluate b at 10, 20, and 30.

B = usubs(Ma,'b',[10;20;30],'-batch');

The '-batch' flag causes usubs to evaluate each model in the array at all three values
of b. Thus B is a 4-by-3 array of M values.

The '-batch' syntax here yields the same result as the parameter grid approach used
in the previous example:

aval = [1;2;3;4];

bval = [10;20;30];

[as,bs] = ndgrid(aval,bval);

B = usubs(M,'a',as,'b',bs);

Instantiate Uncertain Parameter Using Different Value for Each Entry in Array

Evaluate an array of uncertain models, substituting a different value for the uncertain
parameter in each entry in the array.

Create a 1-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);

b = ureal('b',-3);

M = [a b];

Replace a by each of the values 1, 2, 3, and 4.

Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one
uncertain parameter b.

For each model in the array Ma, evaluate b. Use b = 10 for the first entry in the array, b
= 20 for the second entry, and so on.

B = usubs(Ma,'b',{10;20;30;40},'-once');
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The '-once' flag causes usubs to evaluate the first model in the array using the first
specified value for b, the second model for the second specified value, etc.

Replace Uncertain Parameters with Values Returned by usample

Replace the uncertain parameters in an uncertain models by values specified in struct
array form, as returned by usample.

This is useful, for example, when you have multiple uncertain models that use the same
set of parameters, and you want to evaluate all models at the same parameter values.

Create two uncertain matrices that have the same uncertain parameters, a and b.

a = ureal('a',5);

b = ureal('b',-3);

M1 = [a b];

M2 = [a b;0 a*b];

Generate some random samples of M1.

[M1rand,samples] = usample(M1,5);

M1rand is an array of five values of M1, evaluated at randomly generated values of a and
b. These a and b values are returned in the struct array samples.

Examine the struct array samples.

samples

samples = 

5x1 struct array with fields:

    a

    b

The field names of samples correspond to the uncertain parameters of M1. The
values are the parameter values used to generate M1rand. Because M2 has the same
parameters, you can use this structure to evaluate M2 at the same set of values.

M2rand = usubs(M2,samples);
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This command returns a 1-by-5 array of instantiations of M2.

See Also
gridureal | usample | simplify
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viewSpec

View tuning requirements; validate design against requirements

Syntax

viewSpec(Req)

viewSpec(Req,T)

viewSpec(Req,T,Info)

Description

viewSpec(Req) displays a graphical view of a TuningGoal tuning requirement or
vector of tuning requirements.

viewSpec(Req,T) plots the performance of a tuned control system against the tuning
requirement.

viewSpec(Req,T,Info) uses the Info structure returned by systune for correct
scaling of MIMO open-loop requirements, such as loop shapes and stability margins.

Examples

Visualize Tuning Requirement as Function of Frequency

Create a tuning requirement that constrains the response from a signal, 'd', to another
signal, 'y', to roll off at 20 dB/decade at frequencies greater than 1. The requirement
also imposes disturbance rejection (maximum gain of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);

Req = TuningGoal.MaxGain('du','u',gmax);

When you use a frequency response data (frd) model to sketch the bounds of a gain
constraint or loop shape, the tuning requirement interpolates the constraint. This
interpolation coverts the constraint to a smooth function of frequency.
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Examine the interpolated gain constraint using viewSpec.

viewSpec(Req)

The yellow region represents gain values that violate the tuning requirement.

Validate Tuning Result Against Requirements

Validate a control system tuned with systune to determine whether small violations of
tuning requirements are acceptable.

When you tune a control system using tuning commands such as systune, use
viewSpec to compare the tuned result against the tuning requirements. Doing so can
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help you determine whether the tuned system comes sufficiently close to meeting your
soft requirements.

Open a Simulink® model that contains a control system you want to tune.

open_system('rct_airframe2')

Create requirements for tuning the control system. For this example, use tracking, roll-
off, stability margin, and disturbance rejection requirements.

Req1 = TuningGoal.Tracking('az ref','az',1);

Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));

Req3 = TuningGoal.Margins('delta fin',7,45);

MaxGain = frd([2 200 200],[0.02 2 200]);

Req4 = TuningGoal.Gain('delta fin','az',MaxGain);

Tune the model using these tuning requirements.

ST0 = slTuner('rct_airframe2','MIMO Controller');

addPoint(ST0,'delta fin');

rng('default');

[ST1,fSoft,~,Info] = systune(ST0,[Req1,Req2,Req3,Req4]);



2 Alphabetical List

2-492

Final: Soft = 1.15, Hard = -Inf, Iterations = 73

ST1 is a tuned version of the slTuner interface to the control system. ST1 contains the
tuned values of the tunable parameters of the MIMO controller in the model.

Verify that the tuned system satisfies the margin requirement.

figure;

viewSpec(Req3,ST1,Info)

The yellow region denotes margins that do not satisfy the requirement. The red plot
represents the actual stability margin of the tuned system, ST1. The blue plot represents
the margin used in the optimization calculation, which is an upper bound on the actual
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margin. For ST1, the plot indicates that the margin requirement is satisfied at all
frequencies.

Validate the tracking and disturbance rejection requirements in the frequency domain.

figure;

viewSpec([Req1,Req4],ST1,Info)

When you provide a vector of requirements, viewSpec puts all the requirements into a
single figure window.

The first plot shows that the tuned system very nearly meets the tracking requirement.
The slight violation suggests that setpoint tracking will perform close to expectations.
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The second plot shows that the disturbance rejection levels off in violation of the
requirement at very low frequencies. A small bump near 35 rad/s suggests possible
damped oscillations at this frequency.

Use step and getIOTransfer to examine setpoint tracking and disturbance rejection in
the time domain.

Input Arguments

Req — Tuning requirement to view or validate
TuningGoal requirement object | vector of TuningGoal objects

Tuning requirement to view or validate, specified as a TuningGoal requirement object or
vector of TuningGoal objects. TuningGoal requirement objects include:

• TuningGoal.Tracking

• TuningGoal.Gain

• TuningGoal.WeightedGain

• TuningGoal.Variance

• TuningGoal.WeightedVariance

• TuningGoal.LoopShape

• TuningGoal.Margins

• TuningGoal.Poles

• TuningGoal.ControllerPoles

T — Tuned control system
generalized state-space model | slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an
slTuner interface to a Simulink model.

The control system, T, is typically the result of using the tuning requirement to tune
control system parameters with systune.

Example: [T,fSoft,gHard,Info] = systune(T0,SoftReq,HardReq), where T0 is
a tunable genss model

Example: [T,fSoft,gHard,Info] = systune(ST0,SoftReq,HardReq), where ST0
is a slTuner interface object
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Info — System information
data structure returned by systune

System information, specified as the data structure returned by systune when you use
that command to tune a control system. Use Info when validating tuned MIMO systems,
to ensure that viewSpec correctly scales open-loop requirements such as loop shapes
and stability margins.

More About
• “Generalized Models”

See Also
TuningGoal.Tracking | TuningGoal.Gain | TuningGoal.Sensitivity |
TuningGoal.Overshoot | TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain
| TuningGoal.Margins | TuningGoal.WeightedGain | TuningGoal.Variance |
TuningGoal.WeightedVariance | TuningGoal.LoopShape | TuningGoal.Poles
| TuningGoal.ControllerPoles | evalSpec | genss | slTuner | systune |
systune (for slTuner)
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wcgain

Calculate bounds on worst-case gain of uncertain system

Syntax

[wcg,wcu,info] = wcgain(sys)

[wcg,wcu,info] = wcgain(sys,opts)

Description

The gain of an uncertain system generally depends on the values of its uncertain
elements. Here “gain” refers to the frequency response magnitude. (For multi-input,
multi-output systems, the “gain” refers to the maximum singular value of the frequency
response matrix.) Determining the maximum gain over all allowable values of the
uncertain elements is referred to as a worst-case gain analysis. This maximum gain is
called the worst-case gain.

The following figure shows the frequency response magnitude of many samples of an
uncertain system model.
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wcgain can perform two types of analysis on uncertain systems.

• A max-over-frequency worst-case gain analysis yields the frequency-dependent curve
of maximum gain, shown in the figure below.
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This plot shows the maximum frequency-response magnitude at each frequency due
to the uncertain elements within the model.

• A peak-over-frequency worst-case gain analysis only aims to compute the largest value
of the frequency-response magnitude across all frequencies. During such an analysis,
large frequency ranges can be quickly eliminated from consideration, thus reducing
the computation time.
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The default analysis performed by wcgain is max-over-frequency. You can control which
analysis is performed by using the MaxOverFrequency option in the wcgainOptions
options set.

Likewise, for arrays of uncertain models, the default wcgain analysis is max-over-array.
This means that wcgain computes the worst-case gain over all models in the array. To
compute the worst-case gain for each model separately, set the MaxOverArray option in
the wcgainOptions options set to 'off'.

As with other uncertain-system analysis tools, only bounds on the worst-case gain are
computed. The exact value of the worst-case gain is guaranteed to lie between these
upper and lower bounds.

The computation used in wcgain is a frequency-domain calculation. If the input system
sys is an uncertain frequency response object (ufrd), then the analysis is performed
on the frequency grid within the ufrd. If the input system sys is an uncertain state-
space object (uss), then an appropriate frequency grid is generated (automatically), and
the analysis performed on that frequency grid. In all descriptions below, N denotes the
number of points in the frequency grid.
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Basic Syntax

Suppose sys is an ufrd or uss with M uncertain elements. Calculate the worst-case gain
of sys.

[wcg,wcu] = wcgain(sys) 

wcg is a structure with the following fields

Field Description

LowerBound Lower bound on worst-case gain, positive scalar.
UpperBound Upper bound on worst-case gain, positive scalar. If the

nominal value of the uncertain system is unstable, then
maxgain.LowerBound and maxgain.UpperBound equal ∞.

CriticalFrequency The critical value of frequency at which maximum gain
occurs (this is associated with maxgain.LowerBound).

wcu is a structure containing values of uncertain elements that yield the worst-case
uncertainty. There are M field names, which are the names of uncertain elements of sys.
The value of each field is the corresponding value of the uncertain element, such that
when combined lead to the gain value in maxgain.LowerBound. The command

 norm(usubs(sys,maxgainunc),'inf') 

shows the gain.

Examples

Worst-Case Performance of Closed-Loop Uncertain System

To examine the worst-case performance of an uncertain control system, create a
plant with nominal model of an integrator, and include additive unmodeled dynamics
uncertainty of a level of 0.4 (this corresponds to 100% model uncertainty at 2.5 rad/s).
Then design a proportional controller K1 that puts the nominal closed-loop bandwidth at
0.8 rad/s. Roll off K1 at a frequency 25 times the nominal closed-loop bandwidth. Repeat
the design for a controller K2 that puts the nominal closed-loop bandwidth at 2.0 rad/s. In
each case, form the closed-loop sensitivity function.
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P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);

BW1 = 0.8;

K1 = tf(BW1,[1/(25*BW1) 1]);

S1 = feedback(1,P*K1);

BW2 = 2.0;

K2 = tf(BW2,[1/(25*BW2) 1]);

S2 = feedback(1,P*K2);

Assess the worst-case gain of the closed-loop sensitivity functions.

[maxgain1,wcunc1] = wcgain(S1);

[maxgain2,wcunc2] = wcgain(S2);

maxgain1, maxgain2

maxgain1 = 

           LowerBound: 1.5069

           UpperBound: 1.5071

    CriticalFrequency: 5.0420

maxgain2 = 

           LowerBound: 5.1032

           UpperBound: 5.1032

    CriticalFrequency: 10.8022

The maxgain variables indicate that controller K1 achieves better worst-case
performance than K2. Plot Bode magnitude plots of the nominal closed-loop sensitivity
functions, as well as the worst instances, using usubs to replace the uncertain element
with the worst value returned by wcgain.

bodemag(S1.Nom,'r--',usubs(S1,wcunc1),'r',S2.Nom,'b--',...

        usubs(S2,wcunc2),'b')

legend('Nominal S1','Worst Case S1','Nominal S2','Worst Case S2',...

        'Location','SouthEast')
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Although the nominal closed-loop sensitivity resulting from K2 is superior to that with
K1, the worst-case behavior is much worse.

Basic Syntax with Third Output Argument

A third output argument yields more specialized information, including sensitivities
of the worst-case gain to the uncertain element's ranges and frequency-by-frequency
information.

[wcg,wcu,info] = wcgain(sys) 

The third output argument info is a structure with the following fields
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Field Description

Sensitivity A struct with M fields. Field names are names of uncertain elements
of sys. Values of fields are positive numbers, each entry indicating the
local sensitivity of the worst-case gain in maxgain.LowerBound to all the
individual uncertain element's uncertainty ranges. For instance, a value of
25 indicates that if the uncertainty range is enlarged by 8%, then the worst-
case gain should increase by about 2%. If the Sensitivity property of the
wcgainOptions object is 'off', the values are NaN.

Frequency N-by-1 frequency vector associated with analysis.
BadUncertainValuesStructure of worst-case uncertainty values.
ArrayIndex 1-by-1 scalar matrix whose value is 1. In more complicated situations

(described later) the value of this field is dependent on the input data.

Specifying Additional Options

Use wcgainOptions to specify additional options for the worst-case gain computation.
For example, you can turn the sensitivity computation on or off, set the step-size in
the sensitivity computation, adjust the stopping criteria, or control behavior across
frequency and array dimensions. For instance, you can turn the sensitivity calculation off
as follows:

opt = wcgainOptions('Sensitivity','off'); 

[maxgain,maxgainunc,info] = wcgain(sys,opt) 

To compute the worst-case gain as a function of frequency, set the MaxOverFrequency
option to 'off'.

For a model array sys, set the MaxOverFrequency option to 'off' to compute the
worst-case gain for each individual model in the array.

See the wcgainOptions reference page for more information about available options for
wcgain.

Behavior on Non-Uncertain Systems

wcgain can also be used on not-uncertain systems (e.g., ss and frd). If sys is a
single ss or frd, then the worst-case gain is simply the gain of the system (identical
to norm(sys,'inf')). However, if sys has array dimensions, then the possible
combinations of “peak-over” and “max-over” can be used to customize the computation.
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Limitations
Because the calculation is carried out with a frequency grid, it is possible (likely) that
the true critical frequency is missing from the frequency vector used in the analysis. This
is similar to the problem in robuststab. However, compared with robuststab, the
problem in wcgain is less acute. Thought of as a function of problem data and frequency,
the worst-case gain is a continuous function (unlike the robust stability margin, which
in special cases is not; see Getting Reliable Estimates of Robustness Margins). Hence,
in worst-case gain calculations, increasing the density of the frequency grid will always
increase the accuracy of the answers and in the limit, answers arbitrarily close to the
actual answers are obtainable with finite frequency grids.

Alternatives
Use wcgainplot to plot the worst-case gain of an uncertain system.

More About
Algorithms

The worst-case gain is guaranteed to be at least as large as LowerBound (some value
of allowable uncertain elements yield this gain – one instance is returned in the
structure maxgainunc. The frequency at which the gain in LowerBound occurs is in
CriticalFrequency. Lower bounds for wcgain are computed using a power iteration
on ultidyn, ucomplex and ucomplexm uncertain atoms, (holding uncertain real
parameters fixed) and a coordinate aligned search on the uncertain real parameters
(while holding the complex blocks fixed).

Similarly, the worst-case gain is guaranteed to be no larger than UpperBound. In other
words, for all allowable modeled uncertainty, the gain is provably less than or equal
to UpperBound. These bounds are derived using the upper bound for the structured
singular value, which is essentially optimally-scaled, small-gain theorem analysis. Upper
bounds are obtained by solving a semidefinite program. wcgain uses branch and bound
on the uncertain real parameters to tighten the lower and upper bounds.

See Also
mussv | norm | robuststab | wcsens | wcgainOptions | wcmargin | wcgainplot
| robustperf
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wcgainOptions
Option set for wcgain, wcgainplot, wcnorm, or wcsens

Syntax

opt = wcgainOptions

opt = wcgainOptions(Name,Value,...)

Description

opt = wcgainOptions returns the default option set for a wcgain calculation. The
commands wcgainplot, wcnorm, and wcsens also use wcgain to compute their results.
Use a wcgainOptions options set to control options for those calculations.

opt = wcgainOptions(Name,Value,...) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Sensitivity'

Determines whether to compute the sensitivity of worst-case gain with respect to each
individual uncertain element.

Sensitivity is a string that takes the following values:

• 'on' — wcgain computes the sensitivity of the worst-case gain with respect to each
individual uncertain element. This provides an indication of which elements are most
problematic.
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• 'off' — wcgain does not compute the sensitivity of the worst-case gain with respect
to each individual uncertain element.

Default: 'on'

'VaryUncertainty'

Percentage variation of uncertainty for sensitivity calculations. The sensitivity estimate
uses a finite difference calculation.

Default: 25

'LowerBoundOnly'

Determines whether only the lower bound is computed.

LowerBoundOnly is a string that takes the following values:

• 'on' — wcgain only computes a lower bound on the worst-case gain
• 'off' — wcgain computes lower and upper bounds on the worst-case gain

Default: 'off'

'MaxOverFrequency'

MaxOverFrequency is a string that takes the following values:

• 'on' — wcgain computes the worst-case H∞ norm (peak gain over frequency)
• 'off' — wcgain computes the worst-case gain at each frequency point

Default: 'on'

'MaxOverArray'

For uncertain model arrays, determines if worst-case gain is calculated over entire array
or individually for all models in array.

MaxOverArray is a string that takes the following values:

• 'on' — wcgain computes the worst-case gain over all models
• 'off' — wcgain computes the worst-case gain for each model individually



 wcgainOptions

2-507

Default: 'on'

'AbsTol'

Absolute tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound).

Relaxing tolerance speeds up the computation.

Default: 0.02

'RelTol'

Relative tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound).

Default: 0.05

'AbsMax'

Absolute threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.

Specify AbsMax and RelMax to terminate when the lower bound is large enough
compared to the nominal gain.

Default: 5

'RelMax'

Relative threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.

Specify AbsMax and RelMax to terminate when the lower bound is large enough
compared to the nominal gain.

Default: 20
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'NSearch'

Number of lower bound searches at each frequency

Default: 2

Output Arguments

opt

Option set containing the specified options for wcgain.

Examples

Create an options set for wcgain with only the lower bound being calculated and 5 lower
bound searches at each frequency.

opt = wcgainOptions('LowerBoundOnly','on','Nsearch',5)

Alternatively, use dot notation to set the values of opt.

opt = wcgainOptions;

opt.LowerBound = 'on';

opt.NSearch = 5;

See Also
wcgain | wcgainplot | wcnorm | wcsens
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wcgainplot

Graphical worst-case gain analysis

Syntax

wcgainplot(sys)

wcgainplot(sys,w)

wcgainplot(sys,...,options)

Description

wcgainplot(sys) plots the nominal and worst-case gains of the uncertain system sys
as a function of frequency. For multi-input, multi-output (MIMO) systems, gain refers
to the largest singular value of the frequency response matrix. (See sigma for more
information about singular values.) The plot includes:

• Nominal — nominal gain of sys
• Worst — the response falling within the uncertainty of sys that has the highest peak

gain
• Worst-case gain (lower bound) — the lowest worst-case gain at each frequency
• Worst-case gain (upper bound) — the highest gain within the uncertainty at each

frequency
• Sampled Uncertainty — 20 responses randomly sampled from sys

wcgainplot(sys,w) focuses the plot on the frequencies specified by w.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case gains in the
range {wmin,wmax}.

• If w is an array of frequencies, wcgainplot plots the worst-case gains at each
frequency in the array.

wcgainplot(sys,...,options) uses the options set options to specify additional
options for the computation of the worst-case gains. Use wcgainOptions to create the
options set.
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Input Arguments

sys

Uncertain dynamic system.

w

Frequencies of worst-case gain plots. Specify frequencies in radians/TimeUnit, where
TimeUnit is the time unit of sys.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case gains in the
range {wmin,wmax}.

• If w is an array of frequencies, wcgainplot plots the worst-case gains at each
frequency in the array.

options

Options set specifying additional options for the computation of the worst-case gains. Use
wcgainOptions to create the options set.

Examples

Plot Worst-Case Gain of Uncertain System

Plot the worst-case gain of the following system:

The uncertain parameter a = 2 +/- 1. Plot the worst-case gain between 0.1 and 100
rad/s.

a = ureal('a',2);

sys = tf([1 3 0],[1 2 a]);

wcgainplot(sys,{.1 100})
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The Worst curve identifies the single response within the uncertainty that yields the
highest gain at any frequency. The Worst-case gain (upper bound) curve is the
envelope produced by finding the highest gain within the uncertainty at each frequency.

More About

Algorithms

wcgainplot uses wcgain to compute the worst-case gains. Use the options argument to
wcgainplot to set options for the wcgain algorithm.

wcgainplot uses usample to compute the Sampled Uncertainty curves.
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See Also
wcgain | wcgainOptions | usample | sigma
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wcgopt
Options object for use with wcgain, wcsens, and wcmargin

Note: wcgopt will be removed in a future version. Use wcgainOptions or
wcmarginOptions instead.
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wcmargin

Worst-case disk stability margins of uncertain feedback loops

Syntax

wcmarg = wcmargin(L)

wcmargi = wcmargin(p,c)

[wcmargi,wcmargo] = wcmargin(p,c)

wcmargi = wcmargin(p,c,opt)

[wcmargi,wcmargo] = wcmargin(p,c,opt)

Description

Classical gain and phase margins define the allowable loop-at-a-time variations in the
nominal system gain and phase for which the feedback loop retains stability.

An alternative to classical gain and phase margins is the disk margin. The disk margin
is the largest region for each channel such that for all gain and phase variations inside
the region the nominal closed-loop system is stable. See the dmplot and loopmargin
reference pages to learn more about the algorithm.

Consider a system with uncertain elements. It is of interest to determine the margin of
each individual channel in the presence of uncertainty. These margins are called worst-
case margins. Worst-case margin, wcmargin calculates the largest disk margin such that
for values of the uncertainty and all gain and phase variations inside the disk, the closed-
loop system is stable. The worst-case gain and phase margin bounds are defined based on
the balanced sensitivity function. Hence, results from the worst-case margin calculation
imply that the closed-loop system is stable for a given uncertainty set and would remain
stable in the presence of an additional gain and phase margin variation in the specified
input/output channel.

wcmargL = wcmargin(L) calculates the combined worst-case input and output loop-at-
a-time gain/phase margins of the feedback loop consisting of the loop transfer matrix L in
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negative feedback with an identity matrix. L must be an uncertain system, uss or ufrd
object. If L is a uss object, the frequency range and number of points used to calculate
wcmargL are chosen automatically. Note that in this case, the worst-case margins at the
input and output are equal because an identity matrix is used in feedback. wcmarg is a
NU-by-1 structure with the following fields:

Field Description

GainMargin Guaranteed bound on worst-case, single-loop gain margin at plant
inputs. Loop-at-a-time analysis.

PhaseMargin Loop-at-a-time worst-case phase margin at plant inputs. Units are
degrees.

Frequency Frequency associated with the worst-case margin (rad/s).
Sensitivity Struct with M fields. Field names are names of uncertain elements

of P and C. Values of fields are positive numbers, which each entry
indicating the local sensitivity of the worst-case margins to all the
individual uncertain element's uncertainty ranges. For instance,
a value of 50 indicates that if the uncertainty range is enlarged by
8%, then the worst-case gain should increase by about 4%. If the
Sensitivity property of the wcmarginOptions object is 'off',
the values are NaN.

[wcmargi,wcmargo] = wcmargin(P,C) calculates the combined worst-case input
and output loop-at-a-time gain/phase margins of the feedback loop consisting of C in
negative feedback with P. C should only be the compensator in the feedback path,
without reference channels, if it is a 2-Dof architecture. That is, if the closed-loop system
has a 2-Dof architecture the reference channel of the controller should be eliminated
resulting in a 1-Dof architecture as shown in the following figure. Either P or C must be
an uncertain system, uss or ufrd, or an uncertain matrix, umat. If P and C are ss/tf/
zpk or uss objects, the frequency range and number of points used to calculate wcmargi
and wcmargo are chosen automatically.
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Basic Syntax

[wcmargi,wcmargo] = wcmargin(L) 

[wcmargi,wcmargo] = wcmargin(P,C) 

wcmargi and wcmargo are structures corresponding to the loop-at-a-time worst-case,
single-loop gain and phase margin of the channel. For the single-loop transfer matrix L of
size N-by-N, wcmargi is a N-by-1 structure. For the case with two input arguments, the
plant model P will have NY outputs and NU inputs and hence the controller C must have
NU outputs and NY inputs. wcmargi is a NU-by-1 structure with the following fields:

Field Description

GainMargin Guaranteed bound on worst-case, single-loop gain margin at plant
inputs. Loop-at-a-time analysis.

PhaseMargin Loop-at-a-time worst-case phase margin at plant inputs. Units are
degrees.

Frequency Frequency associated with the worst-case margin (rad/s).
Sensitivity Struct with M fields. Field names are names of uncertain elements

of P and C. Values of fields are positive numbers, which each entry
indicating the local sensitivity of the worst-case margins to all the
individual uncertain element's uncertainty ranges. For instance,
a value of 50 indicates that if the uncertainty range is enlarged by
8%, then the worst-case gain should increase by about 4%. If the
Sensitivity property of the wcmarginOptions object is 'off',
the values are NaN.

wcmargo is an N-by-1 structure for the single loop transfer matrix input and wcmargo
is an NY-by-1 structure when the plant and controller are input. In both these cases,
wcmargo has the same fields as wcmargi. The worst-case bound on the gain and phase
margins are calculated based on a balanced sensitivity function.

[wcmargi,wcmargo] = wcmargin(L,opt) and

[wcmargi,wcmargo] = wcmargin(p,c,opt) specify options described in opt. (See
wcmarginOptions for more details on the options for wcmargin.)

The sensitivity of the worst-case margin calculations to the individual uncertain
elements is selected using the options object opt. To compute sensitivities, create a
wcmarginOptions options object, and set the Sensitivity property to 'on'.
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Examples

MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or
distance to –1) can be inaccurate measures of multivariable robustness margins. Margins
of the individual loops can be very sensitive to small perturbations within other loops.

The nominal closed-loop system considered here is shown as follows.

G and K are 2-by-2 multi-input/multi-output (MIMO) systems, defined as

G

s

s s

s s

K I:
( )

( )
,=

+

− +

− + −













=
1 1

1
2 2

2

2
2

α

α α

α α

Set α := 10, construct the nominal model G in state-space form, and compute its
frequency response.

a = [0 10;-10 0]; 

b = eye(2); 

c = [1 8;-10 1]; 

d = zeros(2,2); 

G = ss(a,b,c,d); 

K = [1 -2;0 1]; 

The nominal plant was analyzed previously using the command. Based on experimental
data, the gain of the first input channel, b(1,1), is found to vary between 0.97 and 1.06.
The following statement generates the updated uncertain model.

ingain1 = ureal('ingain1',1,'Range',[0.97 1.06]); 

b = [ingain1 0;0 1]; 
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Gunc = ss(a,b,c,d); 

Because of differences between measured data and the plant model an 8% unmodeled
dynamic uncertainty is added to the plant outputs.

unmod = ultidyn('unmod',[2 2],'Bound',0.08); 

Gmod = (eye(2)+unmod)*Gunc; 

Gmodg = ufrd(Gmod,logspace(-1,3,60)); 

You can use the command wcmargin to determine the worst-case gain and phase
margins in the presences of the uncertainty.

[wcmi,wcmo] = wcmargin(Gmodg,K); 

The worst-case analysis corresponds to maximum allowable disk margin for all possible
defined uncertainty ranges. The worst-case single-loop margin analysis performed using
wcmargin results in a maximum allowable gain margin variation of 1.31 and phase
margin variations of ± 15.6 degs in the second input channel in the presence of the
uncertainties 'unmod' and 'ingain1'. wcmi(1)

ans = 

     GainMargin: [0.3613 2.7681] 

    PhaseMargin: [-50.2745 50.2745] 

      Frequency: 0.1000 

     Sensitivity: [1x1 struct] 

wcmi(2) 

ans = 

     GainMargin: [0.7585 1.3185] 

    PhaseMargin: [-15.6426 15.6426] 

      Frequency: 0.1000 

     Sensitivity: [1x1 struct] 

Hence even though the second channel had infinite gain margin and 90 degrees of phase
margin, allowing variation in both uncertainties, 'unmod' and 'ingain1' leads to a
dramatic reduction in the gain and phase margin.

You can display the sensitivity of the worst-case margin in the second input channel to
'unmod' and 'ingain1' as follows:

wcmi(2).Sensitivity

ans = 

    ingain1: 12.1865

      unmod: 290.4557
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The results indicate that the worst-case margins are not very sensitive to the gain
variation in the first input channel, 'ingain1', but very sensitive to the LTI dynamic
uncertainty at the output of the plant.

The worst-case single-loop margin at the output results in a maximum allowable gain
margin variation of 1.46 and phase margin variation of ± 21.3 degs in the second output
channel in the presence of the uncertainties 'unmod' and 'ingain1'.

wcmo(1) 

ans = 

     GainMargin: [0.2521 3.9664] 

    PhaseMargin: [-61.6995 61.6995] 

      Frequency: 0.1000 

     Sensitivity: [1x1 struct] 

wcmo(2) 

ans = 

     GainMargin: [0.6835 1.4632] 

    PhaseMargin: [-21.2984 21.2984] 

      Frequency: 0.1000 

     Sensitivity: [1x1 struct] 

You can display the sensitivity of the worst-case margin in the second output channel to
'unmod' and 'ingain1' as follows:

wcmo(2).Sensitivity

ans = 

    ingain1: 16.3435

      unmod: 392.1320

The results are similar to the worst-case margins at the input. However, the worst-
case margins at the second output channel are even more sensitive to the LTI dynamic
uncertainty than the input channel margins.

See Also
dmplot | loopsens | usubs | wcgain | robuststab | wcmarginOptions | wcsens
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wcmarginOptions
Option set for wcmargin

Syntax

opt = wcmarginOptions

opt = wcmarginOptions(Name,Value,...)

Description

opt = wcmarginOptions returns the default option set for wcmargin.

opt = wcmarginOptions(Name,Value,...) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Sensitivity'

Determines whether to compute the sensitivity of worst-case gain with respect to each
individual uncertain element.

Sensitivity is a string that takes the following values:

• 'on' — Sensitivity of the worst-case gain is computed with respect to each
individual uncertain element. This provides an indication of which elements are most
problematic.
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• 'off' — wcmargin does not compute the sensitivity of the worst-case gain with
respect to each individual uncertain element.

Default: 'off'

'AbsTol'

Absolute tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound)

Default: 0.02

'RelTol'

Relative tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol,
Reltol*UpperBound)

Default: 0.05

Output Arguments

opt

Option set containing the specified options for wcmargin.

Examples

Create an options set for wcmargin with an 0.01 and 0.03 as the absolute and relative
tolerances on the worst-case margin bounds, respectively.

opt = wcmarginOptions('AbsTol',0.01,'RelTol',0.03);

Alternatively, use dot notation to set the values of opt.

opt = wcmarginOptions;

opt.AbsTol = 0.01;



2 Alphabetical List

2-522

opt.RelTol = 0.03;

See Also
wcmargin | wcgainOptions
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wcnorm
Worst-case norm of uncertain matrix

Syntax
maxnorm = wcnorm(m)

[maxnorm,wcu] = wcnorm(m)

[maxnorm,wcu] = wcnorm(m,opts)

[maxnorm,wcu,info] = wcnorm(m)

[maxnorm,wcu,info] = wcnorm(m,opts)

Description

The norm of an uncertain matrix generally depends on the values of its uncertain
elements. Determining the maximum norm over all allowable values of the uncertain
elements is referred to as a worst-case norm analysis. The maximum norm is called the
worst-case norm.

As with other uncertain-system analysis tools, only bounds on the worst-case norm are
computed. The exact value of the worst-case norm is guaranteed to lie between these
upper and lower bounds.

Basic syntax

Suppose mat is a umat or a uss with M uncertain elements. The results of

[maxnorm,maxnormunc] = wcnorm(mat) 

maxnorm is a structure with the following fields.

Field Description

LowerBound Lower bound on worst-case norm, positive scalar.
UpperBound Upper bound on worst-case norm, positive scalar.
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maxnormunc is a structure that includes values of uncertain elements and maximizes
the matrix norm. There are M field names, which are the names of uncertain elements
of mat. The value of each field is the corresponding value of the uncertain element, such
that when jointly combined, lead to the norm value in maxnorm.LowerBound. The
following command shows the norm:

 norm(usubs(mat,maxnormunc)) 

Basic syntax with third output argument

A third output argument provides information about sensitivities of the worst-case norm
to the uncertain elements ranges.

[maxnorm,maxnormunc,info] = wcgain(mat) 

The third output argument info is a structure with the following fields:

Field Description

Sensitivity A struct with M fields. Fieldnames are names of uncertain elements
of sys. Field values are positive numbers, each entry indicating the
local sensitivity of the worst-case norm in maxnorm.LowerBound
to all of the individual uncertain elements uncertainty ranges. For
instance, a value of 25 indicates that if the uncertainty range is
increased by 8%, then the worst-case norm should increase by about
2%. If the Sensitivity property of the wcgainOptions object is
'off', the values are NaN.

ArrayIndex 1-by-1 scalar matrix with the value of 1. In more complicated
situations (described later) the value of this field depends on the input
data.

Examples

You can construct an uncertain matrix and compute the worst-case norm of the matrix,
as well as its inverse. Your objective is to accurately estimate the worst-case, or the
largest, value of the condition number of the matrix.

a=ureal('a',5,'Range',[4 6]); 

b=ureal('b',2,'Range',[1 3]); 

b=ureal('b',3,'Range',[2 10]); 
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c=ureal('c',9,'Range',[8 11]); 

d=ureal('d',1,'Range',[0 2]); 

M = [a b;c d]; 

Mi = inv(M); 

[maxnormM] = wcnorm(M) 

maxnormM = 

    LowerBound: 14.7199 

    UpperBound: 14.7327 

[maxnormMi] = wcnorm(Mi) 

maxnormMi = 

    LowerBound: 2.5963 

    UpperBound: 2.5979 

The condition number of M must be less than the product of the two upper bounds for
all values of the uncertain elements making up M. Conversely, the largest value of M
condition number must be at least equal to the condition number of the nominal value of
M. Compute these crude bounds on the worst-case value of the condition number.

condUpperBound = maxnormM.UpperBound*maxnormMi.UpperBound; 

condLowerBound = cond(M.NominalValue); 

[condLowerBound condUpperBound] 

ans = 

    5.0757   38.2743 

How can you get a more accurate estimate? Recall that the condition number of an nxm
matrix M can be expressed as an optimization, where a free norm-bounded matrix Δ tries
to align the gains of M and M–1
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M M M
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If M is itself uncertain, then the worst-case condition number involves further
maximization over the possible values of M. Therefore, you can compute the worst-case
condition number of an uncertain matrix by using a ucomplexm uncertain element, and
then by using wcnorm to carry out the maximization.

Create a 2-by-2 ucomplexm object, with nominal value equal to zero.

Delta = ucomplexm('Delta',zeros(2,2)); 

The range of values represented by Delta includes 2-by-2 matrices with the maximum
singular value less than or equal to 1.
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You can create the expression involving M, Delta and inv(M).

H = M*Delta*Mi; 

Finally, consider the stopping criteria and call wcnorm. One stopping criteria for
wcnorm(H) is based on the norm of the nominal value of H. During the computation, if
wcnorm determines that the worst-case norm is at least

ABadThreshold+MBadThreshold*norm(N.NominalValue)

then the calculation is terminated. In our case, since H.NominalValue equals 0, the
stopping criteria is governed by ABadThreshold. The default value of ABadThreshold
is 5. To keep wcnorm from prematurely stopping, set ABadThreshold to 38 (based on
our crude upper bound above).

opt = wcgopt('ABadThreshold',38); 

[maxKappa,wcu,info] = wcnorm(H,opt); 

maxKappa 

maxKappa = 

    LowerBound: 26.9629 

    UpperBound: 27.9926 

You can verify that wcu makes the condition number as large as
maxKappa.LowerBound.

cond(usubs(M,wcu)) 

ans = 

   26.9629 

More About

Algorithms

See wcgain

See Also
norm | wcgain | wcgainOptions
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wcsens

Calculate worst-case sensitivity and complementary sensitivity functions of plant-
controller feedback loop

Syntax

wcst = wcsens(L)

wcst = wcsens(L,type)

wcst = wcsens(L,opt)

wcst = wcsens(L,type,scaling)

wcst = wcsens(L,type,scaling,opt)

wcst = wcsens(P,C)

wcst = wcsens(P,C,type)

wcst = wcsens(P,C,opt)

wcst = wcsens(P,C,type,scaling)

wcst = wcsens(P,C,type,scaling,opt)

Description

The sensitivity function, S = (I + L)–1, and the complementary sensitivity function, T =
L(I + L)–1, where L is the loop gain matrix associated with the input, CP, or output, PC,
are two transfer functions related to the robustness and performance of the closed-loop
system. The multivariable closed-loop interconnection structure, shown below, defines
the input/output sensitivity, complementary sensitivity and loop transfer functions.
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Description Equation

Input sensitivity (TFe1←d1) (I + CP)–1

Input complementary sensitivity (TFe2←d1) CP(I + CP)–1

Output sensitivity (TFe3←d2) (I + CP)–1
Output complementary sensitivity (–TFe4←d) PC(I + PC)–1
Input loop transfer function CP
Output loop transfer function PC

wcst = wcsens(L) calculates the worst-case sensitivity and complementary sensitivity
functions for the loop transfer matrix L in feedback in negative feedback with an identity
matrix. If L is a uss object, the frequency range and number of points are chosen
automatically.

wcst = wcsens(P,C) calculates the worst-case sensitivity and complementary
sensitivity functions for the feedback loop C in negative feedback with P. C should only
be the compensator in the feedback path, not any reference channels, if it is a 2-dof
architecture (see loopsens). If P and C are ss/tf/zpk or uss objects, the frequency
range and number of points are chosen automatically. wcst is a structure with the
following substructures:

Fields of wcst

Field Description

Si Worst-case input-to-plant sensitivity function
Ti Worst-case input-to-plant complementary sensitivity function
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Field Description

So Worst-case output-to-plant sensitivity function
To Worst-case output-to-plant complementary sensitivity function
PSi Worst-case plant times input-to-plant sensitivity function
CSo Worst-case compensator times output-to-plant sensitivity function
Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd

objects.

Each sensitivity substructure is a structures with five fields MaximumGain,
BadUncertainValues, System, BadSystem, Sensitivity derived from the
outputs of wcgain.

Fields of Si, So, Ti, To, PSi, CSo

Field Description

MaximumGain struct with fields LowerBound, UpperBound and
CriticalFrequency. LowerBound and UpperBound are bounds
on the unweighted maximum gain of the uncertain sensitivity
function. CriticalFrequency is the frequency at which the
maximum gain occurs.

BadUncertainValues Struct, containing values of uncertain elements which maximize
the sensitivity gain. There are M fluidness, which are the names
of uncertain elements of sensitivity function. The value of
each field is the corresponding value of the uncertain element,
such that when jointly combined, lead to the gain value in
MaximumGain.LowerBound.

System Uncertain sensitivity function (ufrd or uss).
BadSystem Worst-case system based on the uncertain object values

in BadUncertainValues. BadSystem is defined as
BadSystem=usubs(System, BadUncertainValues).

Sensitivity Struct with M fields, fieldnames are names of uncertain elements
of system. Values of fields are positive numbers, each entry
indicating the local sensitivity of the maximum gain to all of the
individual uncertain elements uncertainty ranges. For instance,
a value of 50 indicates that if the uncertainty range is enlarged
by 8%, then the maximum gain should increase by about 4%. If



2 Alphabetical List

2-530

Field Description

the 'Sensitivity' property of the wcgopt object is 'off', the
values are NaN.

wcst = wcsens(L,type) and wcst = wcsens(P,C,type) allow selection
of individual Sensitivity and Complementary Sensitivity functions, type, as
'Si','Ti','So','To','PSi','CSo' corresponding to the sensitivity and
complementary sensitivity functions. Setting type to 'S' or 'T' selects all sensitivity
functions ('Si','So','PSi','CSo') or all complementary sensitivity functions
('Ti','To'). Similarly, setting type to 'Input' or 'Output' selects all input
Sensitivity functions ('Si','Ti','PSi') or all output sensitivity functions
('So,'To','CSo'). 'All' selects all six Sensitivity functions for analysis (default).
type may also be a cell containing a collection of strings, i.e. 'Si','To', as well as a
comma separated list.

wcst = wcsens(L,type,scaling) and wcst = wcsens(P,C,type,scaling)
add a scaling to the worst-case sensitivity analysis. scaling is either the character
strings 'Absolute' (default), 'Relative' or a ss/tf/zpk/frd object. The default
scaling 'Absolute' calculates bounds on the maximum gain of the uncertain sensitivity
function. The 'Relative' scaling finds bounds on the maximum relative gain of the
uncertain sensitivity function. That is, the maximum relative gain is the largest ratio
of the worst-case gain and the nominal gain evaluated at each frequency point in the
analysis, Similarly if scaling is a ss/tf/zpk/frd object, bounds on the maximum
scaled gain of the uncertain sensitivity function are found. If scaling is 'Relative'or
a ss/tf/zpk/frd object, the worst-case analysis peaks over frequency. If scaling is
an object, its input/output dimensions should be 1-by-1 or dimensions compatible with P
and C. type and scaling can also be combined in a cell array, e.g.

wcst = wcsens(P,C,{'Ti','So'},'Abs','Si','Rel','PSi',wt) 

wcst = wcsens(P,C,opt) or wcst = wcsens(P,C,type,scaling,opt) specifies
options for the worst-case gain calculation as defined by opt. (See wcgopt for more
details on the options for wcsens.)

The sensitivity of the worst-case sensitivity calculations to the individual uncertain
components can be determined using the options object opt. To compute the sensitivities
to the individual uncertain components, create a wcgopt options object, and set the
Sensitivity property to 'on'.

opt = wcgopt('Sensitivity','on'); 
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wcst = wcsens(P,C,opt) 

Examples

The following constructs a feedback loop with a first order plant and a proportional-
integral controller. The time constant is uncertain and the model also includes an
multiplicative uncertainty. The nominal (input) sensitivity function has a peak of 1.09 at
omega = 1.55 rad/sec. Since the plant and controller are single-input / single-output, the
input/output sensitivity functions are the same.

  delta = ultidyn('delta',[1 1]); 

  tau = ureal('tau',5,'range',[4 6]); 

  P = tf(1,[tau 1])*(1+0.25*delta); 

  C=tf([4 4],[1 0]); 

  looptransfer = loopsens(P,C); 

  Snom = looptransfer.Si.NominalValue; 

  norm(Snom,inf) 

  ans = 

    1.0864 

wcsens is then used to compute the worst-case sensitivity function as the uncertainty
ranges over its possible values. More information about the fields in wcst.Si can be
found in the wcgain help. The badsystem field of wcst.Si contains the worst case
sensitivity function. This worst case sensitivity has a peak of 1.52 at omega = 1.02 rad/
sec. The maxgainunc field of wcst.Si contains the perturbation that corresponds to
this worst case sensitivity function.

wcst = wcsens(P,C)      

wcst = 

        Si: [1x1 struct] 

        Ti: [1x1 struct] 

        So: [1x1 struct] 

        To: [1x1 struct] 

       PSi: [1x1 struct] 

       CSo: [1x1 struct] 

    Stable: 1 

Swc = wcst.Si.BadSystem; 

omega = logspace(-1,1,50); 

bodemag(Snom,'-',Swc,'-.',omega); 

legend('Nominal Sensitivity','Worst-Case Sensitivity',... 

  'Location','SouthEast') 

norm(Swc,inf) 
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ans = 

    1.5075 

For multi-input/multi-output systems the various input/output sensitivity functions will,
in general, be different.

References

J. Shin, G.J. Balas, and A.K. Packard, “Worst case analysis of the X-38 crew return
vehicle flight control system,” AIAA Journal of Guidance, Dynamics and Control, vol. 24,
no. 2, March-April 2001, pp. 261-269.

See Also
loopsens | usubs | wcgain | wcgopt | robuststab | wcmargin
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MultiPlot Graph

Plot multiple signals

Description

The MultiPlot Graph block displays signals in a MATLAB figure.

If the input signal is a vector, then each component of the vector is plotted in a separate
axes. Lines are added to the axes in subsequent simulations. The most recent data is
plotted in red. Older plots cycle through seven different colors. The block acts as a “hold-
on, subplotter.”

There are two buttons in the toolbar menu. The eraser button clears the data from all
axes. The export button saves all the visible plot data to the MATLAB workspace in
a variable named by the dialog box entry Variable for Export to Workspace. The
format is a struct array, following the behavior of a To Workspace block, using the
“Structure, With Time” save format.

The MultiPlot Graph block can be used in conjunction with the Uncertain State Space
block to visualize Monte Carlo and worst-case simulation time responses.
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Dialog Box
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Parameters

t-min, t-max

The parameter entries t-min and t-max are the minimum and maximum x-axis limits. t-
min and t-max may be vectors corresponding to each subplot.

y-min, y-max

The parameter entries y-min and y-max are the minimum and maximum y-axis limits
and similarly may be vector quantities.

Sample time

Sample time corresponds to the sample time at which to collect points.

Title

Specifies the title of the multiplot figure.

Variable for Export to Workspace

Variable name of the MATLAB object to contain all the visible plot data exported to
the MATLAB workspace. The format is a struct array, following the behavior of a To
Workspace block, using the "Structure, With Time" save format.
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Uncertain State Space

Specify uncertain system in Simulink

Description

The Uncertain State Space block lets you model parametric and dynamic uncertainty in
Simulink. The block accepts uncertain state space (uss) models or any model that can be
converted to uss, such as umat, ureal and ultidyn objects.
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Dialog Box
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Parameters

Uncertain system variable (uss)

Linear state-space model with uncertainty (uss object). Specify an uss object using one
of the following:

• Function or expression that evaluates to an uss object. For example:

• ss(ureal('a',-5),5,1,1)

• wt*input_unc, where input_unc is an ultidyn object and wt and input_unc
are defined in the MATLAB workspace.

• Variable name, defined in the MATLAB workspace. For example, unc_sys, where
you define unc_sys = ss(ureal('a',-5),5,1,1) in the workspace. This returns
an uss object.

• Model type that can be converted to an uss object. For example:

• LTI models (tf, zpk and ss)
• Uncertain matrix (umat)
• Uncertain real parameters (ureal)
• Uncertain dynamics (ultidyn).

Uncertainty value (struct or [] to use nominal value)

Values of uncertain variables. The uss object that you enter in the Uncertain system
variable (uss) field depends on uncertain variables (ureal or ultidyn object). Use
this field to specify the values of these uncertain variables to use for simulation or
linearization. Specify the value as one of the following:

Value Description

[] Use nominal values.
Structure Use user-defined values. For example, struct('a',1) specifies a

value of 1 for the uncertain variable a.

Use ufind and usample to generate randomized values of uncertain
variables for Monte Carlo simulation. For more information, see
“Vary Uncertainty Values Using Individual Uncertain State Space
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Value Description

Blocks” and “Vary Uncertainty Values Across Multiple Uncertain
State Space Blocks” in the Robust Control Toolbox User's Guide.

Initial states (nominal dynamics)

If the nominal value of the uncertain state variable, unc_sys.NominalValue where
unc_sys is the uncertain system variable specified in the Uncertain system variable
field, has states, specify the initial condition for these states. The value defaults to zero.

Initial states (uncertain dynamics)

If the uncertain system contains some dynamic uncertainty (ultidyn), specify the initial
state of these dynamics. The value defaults to zero.

See Also

ufind, usample, ulinearize, uss, umat, ureal, ultidyn

Tutorials

Robustness Analysis in Simulink

Linearization of Simulink Models with Uncertainty

How To

“Simulate Uncertainty Effects”

“Computing Uncertain State-Space Models from Simulink Models”
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USS System
Import uncertain systems into Simulink

Note USS System block will be removed in a future release. Use Uncertain State Space
block instead.

Description

The USS System block accepts USS and UMAT containing ureal and ultidyn
uncertain objects, as well as ureal and ultidyn objects. An instance of the uncertain
system is used in the simulation or linearization. Internally, USS models are converted
to their state space equivalent for evaluation.

Parameters

USS system variable

The uncertain object (USS, UMAT, ureal, or ultidyn) is entered in the USS system
variable.

Initial states (nominal dynamics)

If the nominal value for the USS system variable has states, then the initial condition for
these states is entered in Initial states (nominal dynamics).

Uncertainty value

The values for the uncertain elements are controlled by the Uncertainty value menu.
If Nominal is selected, then the nominal value of the uncertain object is used. If you
select User defined, then you must enter a MATLAB structure in the User-defined
uncertainty (struct) dialog box. The field names of the structure should correspond
to the names of the uncertain atoms within the USS system variable, while the values
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of the fields are the values used for the uncertain objects (using the command usubs).
If some of these values are SS objects, then these states are referred to as uncertainty
states.

The order of the uncertainty states is determined by the order of atoms in the
Uncertainty property of the USS system variable. The state dimension is determined by
the actual data in the User-defined uncertainty structure. Any extra fields in the
User-defined uncertainty structure are ignored.

User-defined uncertainty (struc)

If User defined is selected from the Uncertainty value pop-up menu, then the
structure data entered in User-defined uncertainty (struct) must contain fields
corresponding to every uncertain atom of the USS system variable. Extra fields are
ignored. usimsamp generates a random instance of each atom in a Simulink model. It
returns a structure, suitable for entry in User-defined uncertainty (struct).

Initial states (uncertain dynamics)

The initial condition for the uncertainty states is entered in Initial states
(uncertain dynamics).


