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TuningGoal.ControllerPoles class

Package: TuningGoal

Constraint on controller dynamics for control system tuning

Description

Use the TuningGoal .Control lerPoles requirement object to specify a tuning
requirement that constrains the dynamics of a tunable component in a control system
model. Use this requirement for constraining the dynamics of tuned blocks identified in
a sITuner interface to a Simulink® model. If you are tuning a genss model of a control
system, use the requirement to constrain tunable elements such as Itiblock.tf or
Itiblock.ss . The TuningGoal .Control lerPoles requirement lets you control the
minimum decay rate, minimum damping, and maximum natural frequency of the poles
of the tunable element, ensuring that the controller is free of fast or resonant dynamics.
The requirement can also ensure stability of the tuned value of the tunable element.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-4 of the object.

Construction

Req = TuningGoal.ControllerPoles(blocklD,mindecay,mindamping,
maxfreq) creates a tuning requirement that constrains the dynamics of a tunable
component of a control system. The minimum decay rate, minimum damping constant,
and maximum natural frequency define a region of the complex plane in which poles of
the component must lie. A nonnegative minimum decay ensures stability of the tuned
poles. The requirement applies to all poles in the block except fixed integrators, such as
the I term of a PID controller.

Input Arguments
blocklID

Tunable component to constrain, specified as a string.
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The string block D designates one of the tuned blocks in the control system you are
tuning.

*  For tuning a Simulink model of a control system, blockid is a tuned block in the
slTuner interface to the model.

*  For tuning a genss model of a control system, blockid is one of the control design
blocks of that model.

mindecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the
frequency units of the control system model you are tuning.

Specify mindecay > 0 to ensure that the block is stable. If you specify a negative value,
the tuned block can include unstable poles.

When you tune the control system using this requirement, all poles of the tunable
component are constrained to satisfy:

* Re(s) < -mindecay, for continuous-time systems.
+ log(]z]) < -mindecay*Ts, for discrete-time systems with sample time Ts.

Default: 0
mindamping

Desired minimum damping ratio of poles of the tunable block, specified as a value
between 0 and 1.

Poles of the block that depend on the tunable parameters are constrained to satisfy
Re(s) < -mindamping*|s]. In discrete time, the damping ratio is computed using
s=log(2)/Ts.

Default: 0
maxfreq

Desired maximum natural frequency of poles of the tunable block, specified as a scalar
value in the units of the control system model you are tuning.

Poles of the block are constrained to satisfy |s] < maxfreq for continuous-time
blocks, or | 1og(z)| < maxfreq*Ts for discrete-time blocks with sample time Ts. This
constraint prevents fast dynamics in the tunable block.
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Default: Inf

Properties
Block

Name of tunable component to constrain, specified as a string. The blockID input
argument sets the value of Block.

MinDecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the
frequency units of the control system you are tuning. The initial value of this property is
set by the mindecay input argument.

MinDecay > 0 to ensure that the block is stable. If you specify a negative value, the tuned
block can include unstable poles.

When you tune the control system using this requirement, all poles of the tunable
component are constrained to satisfy Re(s) < -MinDecay for continuous-time systems,
or log(]z]) < -MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal .ControllerPoles
requirement. Change the minimum decay rate to 0.001:

Req.MinDecay = 0.001;
Default: 0
MinDamping

Desired minimum damping ratio of poles of the tunable block, specified as a value
between 0 and 1. The initial value of this property is set by the mindamping input
argument.

Poles of the block that depend on the tunable parameters are constrained to satisfy
Re(s) < -MinDamping*|s]. In discrete time, the damping ratio is computed using
s=log(z)/Ts.

Default: 0
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MaxFrequency

Desired maximum natural frequency of poles of the tunable block, specified as a scalar
value in the frequency units of the control system model you are tuning. The initial value
of this property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy |s|] < maxfreq for continuous-time
blocks, or | log(z)| < maxfreq*Ts for discrete-time blocks with sample time Ts. This
constraint prevents fast dynamics in the tunable block.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal .ControllerPoles
requirement. Change the maximum frequency to 1000:

Req.MaxFrequency = 1000;

Default: Inf

Name

Name of the requirement object, specified as a string.
For example, if Req is a requirement:

Reqg.Name = "LoopReq";

Default: [1]

Examples

Constrain Dynamics of Tunable Transfer Function

Create a tuning requirement that constrains the dynamics of a tunable transfer function
block in a tuned control system.

For this example, suppose that you are tuning a control system that includes a
compensator block parametrized as a second-order transfer function. Create a tuning

requirement that restricts the poles of that transfer function to the region Re(s) < —0. L

|s| < 30

Create a tunable component that represents the compensator.
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C = Itiblock.tf("Compensator®,2,2);

This command creates a Control Design Block named "Compensator ™ with two poles
and two zeroes. You can construct a tunable control system model, T, by interconnecting
this Control Design Block with other tunable and numeric LTI models. If you tune T
using systune, the values of these poles and zeroes are unconstrained by default.

Create a tuning requirement to constrain the dynamics of the compensator block. Set the
minimum decay rate to 0.1 rad/s, and set the maximum frequency to 30 rad/s.

Req = TuningGoal .ControllerPoles("Compensator®,0.1,0,30);

The mindamping input argument is 0, which imposes no constraint on the damping
constant of the poles the block.

If you tune T using systune and the tuning requirement Req, the poles of the
compensator block are constrained satisfy these values. After you tune T, you can use
viewSpec to validate the tuned control system against the requirement.

Tips

* TuningGoal .ControllerPoles restricts the dynamics of a single tunable
component of the control system. To ensure the stability or restrict the overall
dynamics of the tuned control system, use TuningGoal .Poles.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal .Control lerPoles, f(x) reflects the relative satisfaction or violation of
the goal. For example, if you attempt to constrain the pole of a tuned block to a minimum
damping of { = 0.5, then:

*  f(x) = 1 means the damping of the pole is { = 0.5 exactly.
* f(x) = 1.1 means the damping is { = 0.5/1.1 = 0.45, roughly 10% less than the target.
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* f(x) = 0.9 means the damping is { = 0.5/0.9 = 0.55, roughly 10% better than the target.

See Also

systune (for slTuner) | TuningGoal .Poles | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | Itiblock.tf | Itiblock.ss

How To

. “System Dynamics Specifications”

. “Models with Tunable Coefficients”

1-7
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TuningGoal.Gain class

Package: TuningGoal

Gain constraint for control system tuning

Description

Use the TuningGoal .Gain object to specify a constraint that limits the gain from a
specified input to a specified output. Use this requirement for control system tuning with
tuning commands such as systune or looptune.

When you use a TuningGoal .Gain requirement, the software attempts to tune
the system so that the gain from the specified input to the specified output does not
exceed the specified value. By default, the constraint is applied with the loop closed.
To apply the constraint to an open-loop response, use the Openings property of the
TuningGoal .Gain object.

You can use a gain constraint to:

+  Enforce a design requirement of disturbance rejection across a particular input/output
pair, by constraining the gain to be less than 1

+  Enforce a custom roll-off rate in a particular frequency band, by specifying a gain
profile in that band

Construction

Req = TuningGoal .Gain(inputname,outputname,gainvalue) creates a tuning
requirement Req. This requirement constrains the gain from inputname to outputname
to remain below the value gainvalue.

You can specify the inputname or outputname as cell arrays (vector-valued signals).

If you do so, then the tuning requirement constrains the largest singular value of the
transfer matrix from inputname to outputname. See sigma for more information about
singular values.

Req = TuningGoal.Gain(inputname,outputname,gainprofile) specifies
the maximum gain as a function of frequency. You can specify the target gain profile
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(maximum gain across the I/0 pair) as a smooth transfer function. Alternatively, you can
sketch a piecewise error profile using an frd model.

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u". Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint

e
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint

e

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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gainvalue

Maximum gain (linear). The gain constraint Req specifies that the gain from inputname
to outputname is less than gainvalue.

gainvalue is a scalar value. If the signals inputname or outputname are vector-valued
signals, then gainvalue constrains the largest singular value of the transfer matrix from
inputname to outputname. See sigma for more information about singular values.

gainprofile

Gain profile as a function of frequency. The gain constraint Req specifies that the gain
from inputname to outputname at a particular frequency is less than gainprofile. You can
specify gainprofile as a smooth transfer function (€F, zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight function.
When you do so, the software automatically maps the gain profile onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model.

gainprofile is a SISO transfer function. If inputname or outputname are cell arrays,
gainprofile applies to all I/O pairs from inputname to outputname

Properties

MaxGain

Maximum gain as a function of frequency, expressed as a SISO zpk model.

The software automatically maps the gainvalue or gainprofile input arguments to a zpk
model. The magnitude of this zpk model approximates the desired gain profile, and is
stored in the MaxGain property. Use viewSpec(Req) to plot the magnitude of MaxGain.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are

1-11
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tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or O (False).

By default, TuningGoal .Gain imposes a stability requirement on the closed-

loop transfer function from the specified inputs to outputs, in addition to the gain
requirement. If stability is not required or cannot be achieved, set Stabilize to false
to remove the stability requirement. For example, if the gain constraint applies to an
unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when

the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D;
have the OutputScaling and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: [1]
OutputScaling

Output signal scaling, specified as a vector of positive real values.
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Use this property to specify the relative amplitude of each entry in vector-valued

output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, T(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: [1]
Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.-Models = 2:4;
When Models = NaN, the tuning requirement applies to all models.

Default: NaN

1-13
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Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}

Name

Name of the requirement object, specified as a string.
For example, if Req is a requirement:

Req.Name = "LoopReq”;

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x 1s the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .Gain requirement, f(x) is given by:
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D;lT(s,x)Di

1
flx)= H MaxGain

oo

T(s,x) is the closed-loop transfer function from Input to Output. D, and D; are diagonal
matrices with the OutputScal ing and InputScal ing property values on the diagonal,

respectively. || . ||°Q denotes the H,, norm (see norm).

Examples

Disturbance rejection
Create a gain constraint that enforces a disturbance rejection requirement from a signal
"du” to a signal "u”.

Req = TuningGoal .Gain("du”,"u",1);

This requirement specifies that the maximum gain of the response from "du” to "u”® not
exceed 1 (0 dB).

Custom roll-off specification

Create a gain constraint that constrains the response from a signal "du” to a signal "u*®
to roll off at 20 dB/decade at frequencies greater than 1. The gain constraint also specifies
disturbance rejection (maximum gain of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);

Req = TuningGoal.Gain("du”,"u”,gmax);
These commands use a frd model to specify the gain profile as a function of frequency.
The maximum gain of 1 dB at the frequency 1 rad/s, together with the maximum gain of

0.01 dB at the frequency 100 rad/s, specifies the desired rolloff of 20 dB/decade.

The software converts gmax into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)

1-15
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Requirement 1: Maximum gain as a function of frequency

£n

Singular Values (dB)
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The yellow region indicates where the requirement is violated.

Disturbance rejection

Create a gain constraint that enforces a disturbance rejection requirement from a signal
"du” to a signal "u”.

Req = TuningGoal .Gain("du®,"u",1);

This requirement specifies that the maximum gain of the response from "du” to "u” not
exceed 1 (0 dB).

1-16
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See Also

systune (for slTuner) | TuningGoal.Tracking | looptune | viewSpec |

systune | looptune (for slTuner) | TuningGoal .LoopShape | slTuner |
makeweight

How To
. “Frequency-Domain Specifications”
. “Control of a Linear Electric Actuator”

. “Multi-Loop PID Control of a Robot Arm”
. “MIMO Control of Diesel Engine”

1-17
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TuningGoal.LoopShape class

Package: TuningGoal

Target loop shape for control system tuning

Description

Use the TuningGoal . LoopShape object to specify a target gain profile (gain as

a function of frequency) of an open-loop response. The TuningGoal . LoopShape
requirement constrains the open-loop, point-to-point response (L) at a specified location
in your control system. Use this requirement for control system tuning with tuning
commands, such as systune or looptune.

When you tune a control system, the target open-loop gain profile is converted into
constraints on the inverse sensitivity function inv(S) = (I + L) and the complementary
sensitivity function 7'= 1-S. These constraints are illustrated for a representative tuned
system in the following figure.
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Minimum low-fraguency loop gain
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Where L is much greater than 1, a minimum gain constraint on inv(S) (green shaded
region) is equivalent to a minimum gain constraint on L. Similarly, where L is much
smaller than 1, a maximum gain constraint on 7" (red shaded region) is equivalent to

a maximum gain constraint on L. The gap between these two constraints is twice the
CrossTol parameter, which specifies the frequency band where the loop gain can cross 0
dB.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater
than 1 are interpreted as minimum performance requirements. Such values are lower
bounds on the smallest singular value of the open-loop response. Gain profile values less
than one are interpreted as minimum roll-off requirements, which are upper bounds on
the largest singular value of the open-loop response. For more information about singular
values, see sigma.

Use TuningGoal .LoopShape when the loop shape near crossover is simple or
well understood (such as integral action). To specify only high gain or low gain

1-19
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constraints in certain frequency bands, use TuningGoal .MinLoopGain and
TuningGoal .MaxLoopGain. When you do so, the software determines the best loop
shape near crossover.

Construction

Req = TuningGoal.LoopShape(location, loopgain) creates a tuning requirement
for shaping the open-loop response measured at the specified location. The magnitude

of the single-input, single-output (SISO) transfer function loopgain specifies the target
open-loop gain profile. You can specify the target gain profile (maximum gain across the
I/0 pair) as a smooth transfer function or sketch a piecewise error profile using an frd
model.

Req = TuningGoal.LoopShape(location, loopgain,crosstol) specifies a
tolerance on the location of the crossover frequency. crosstol expresses the tolerance in
decades. For example, crosstol = 0.5 allows gain crossovers within half a decade on either
side of the target crossover frequency specified by loopgain. When you omit crosstol,

the tuning requirement uses a default value of 0.1 decades. You can increase crosstol
when tuning MIMO control systems. Doing so allows more widely varying crossover
frequencies for different loops in the system.

Req = TuningGoal .LoopShape(location,wc) specifies just the target gain
crossover frequency. This syntax is equivalent to specifying a pure integrator loop shape,
loopgain = wc/s.

Req = TuningGoal .LoopShape(location,wcrange) specifies a range for the target
gain crossover frequency. The range is a vector of the form wcrange = [wcl,wc2]. This
syntax is equivalent to using the geometric mean sqrt(wcl*wc2) as wc and setting
crosstol to the half-width of werange in decades. Using a range instead of a single wc
value increases the ability of the tuning algorithm to enforce the target loop shape for all
loops in a MIMO control system.

Input Arguments
location

Location where the open-loop response shape to be constrained is measured, specified as
a string or cell array of strings that identify one or more locations in the control system to
tune. What locations are available depends on what kind of system you are tuning:
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+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u®.

AP = AnalysisPoint("u®);

G = tf(1,[1 2D);

C = Itiblock.pid("C","pi");
T = feedback(G*AP*C,1);

You can use the string "u® to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

The loop shape requirement applies to the point-to-point open-loop transfer function
at the specified location. That transfer function is the open-loop response obtained by
injecting signals at the location and measuring the return signals at the same point.

If location is a cell array, then the loop-shape requirement applies to the MIMO open-
loop transfer function.

loopgain
Target open-loop gain profile as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tf, zpk, or Ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model. When you do
so, the software automatically maps your specified gain profile to a zpk model whose
magnitude approximates the desired gain profile. Use viewSpec(Req) to plot the
magnitude of that zpk model.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater
than 1 are interpreted as minimum performance requirements. These values are

lower bounds on the smallest singular value of L. Gain profile values less than one are
interpreted as minimum roll-off requirements, which are upper bounds on the largest
singular value of L. For more information about singular values, see sigma.
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crosstol

Tolerance in the location of crossover frequency, in decades. specified as a scalar value.
For example, crosstol = 0.5 allows gain crossovers within half a decade on either side of
the target crossover frequency specified by loopgain. Increasing crosstol increases the
ability of the tuning algorithm to enforce the target loop shape for all loops in a MIMO
control system.

Default: 0.1
wc

Target crossover frequency, specified as a positive scalar value. Express wc in units of
rad/TimeUnit, where TimeUnit is the TimeUnit property of the control system model
you are tuning.

wcrange

Range for target crossover frequency, specified as a vector of the form [wcl,wc2].
Express wc in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
control system model you are tuning.

Properties
LoopGain
Target loop shape as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model LoopGain.

CrossTol
Tolerance on gain crossover frequency, in decades.

The initial value of CrossTol is set by the crosstol input when you create the
requirement object.

Default: 0.1
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Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, InT] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or O (False).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to False if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)
LoopScaling
Toggle for automatically scaling loop signals, specified as "on” or "off".

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to "off" to disable such scaling and shape the unscaled open-
loop response.

Default: "on*
Location

Location at which the open-loop response shape to be constrained is measured, specified
as a string or cell array of strings that identify one or more analysis points in the control
system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal . LoopShape requirement.

1-23



] Class Reference

1-24

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = "LoopReq-”;
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Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x 1s the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal . LoopShape requirement, f(x) is given by:

WgS

flx)= Wy T

oo

S =D'[I- L(s,%)] ' D is the scaled sensitivity function.
L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. (If the LoopScal ing property is set
to "off", then D=1)

T =S —I1is the complementary sensitivity function.

Ws and Wr are weighting functions derived from the specified loop shape.

Examples

Loop Shape and Crossover Tolerance

Create a target gain profile requirement for the following control system. Specify integral
action, gain crossover at 1, and a roll-off requirement of 40 dB/decade.

+
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The requirement should apply to the open-loop response measured at the
AnalysisPoint block X. Specify a crossover tolerance of 0.5 decades.

LS = frd([100 1 0.0001],[0.01 1 100D):
Req = TuningGoal .LoopShape("X",LS,0.5);

The software converts LS into a smooth function of frequency that approximates the
piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)

Requirement 1: Minimum and maximum loop gains (CrossTol = 0.5)
"‘..: """‘ T T T TTTTT] T T T TTTTT] T T T TTTTT] T T T TTTT
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The green and red regions indicate the bounds for the inverse sensitivity, inv(S) =
1-G*C, and the and the complementary sensitivity, T = 1-S, respectively. The gap
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between these regions at 0 dB gain reflects the specified crossover tolerance, which is
half a decade to either side of the target loop crossover.

When you use viewSpec(Req,CL) to validate a tuned closed-loop model of this control
system, CL, the tuned values of S and T are also plotted.

Specify Different Loop Shapes for Multiple Loops

Create separate loop shape requirements for the inner and outer loops of the following
control system.

u1+

PID |—» PI N2+ G, [ G, F—w
(:1 (:2

For the inner loop, specify a loop shape with integral action, gain crossover at 1,
and a roll-off requirement of 40 dB/decade. Additionally, specify that this loop shape
requirement should be enforced with the outer loop open.

LS2 = frd([100 1 0.0001],[0.01 1 100]);
Reg2 = TuningGoal .LoopShape("X2",LS2);
Reg2.0penings = "X17;

Specifying "X2" for the location indicates that Req2 applies to the point-to point, open-
loop transfer function at the location X2. Setting Reg2.0penings indicates that the loop
1s opened at the analysis point X1 when Req2 is enforced.

By default, Req2 imposes a stability requirement on the inner loop as well as the
loop shape requirement. In some control systems, however, inner-loop stability might
not be required, or might be impossible to achieve. In that case, remove the stability
requirement from Req?2 as follows.

Reg2.Stabilize = false;

For the outer loop, specify a loop shape with integral action, gain crossover at 0.1, and a
roll-off requirement of 20 dB/decade.
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Two-loop autopilot for controlling the vertical acceleration of an airframe

az ref
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LS1 = frd([10 1 0.01],[0-01 0.1 101);
Reql = TuningGoal .LoopShape("X1",LS1);

Specifying "X1" for the location indicates that Reql applies to the point-to point, open-
loop transfer function at the location X1. You do not have to set Reql.Openings because
this loop shape is enforced with the inner loop closed.

You may need to tune the control system with both loop shaping requirements Reql and
Reqg2. To do so, use both requirements as inputs to the tuning command. For example,
suppose CLO is a tunable genss model of the closed-loop control system. In that case, the
following command tunes the control system to both requirements.

[CL,fSoft] = systune(CLO,[Reql,Reqg2]);

Loop Shape for Tuning Simulink Model

Create a loop-shape requirement for the feedback loop on "q" in the following control
system, which is the Simulink model rct_airframe2. Specify that the loop-shape
requirement is enforced with the "az" loop open.

o=
o4

&

L= o

MIMC Controller

Airframe Model

Open the model.
open_system(“rct_airframe2”)

Create a loop shape requirement that enforces integral action with a crossover a 2 rad/s
for the "q" loop. This loop shape corresponds to a loop shape of 2/s.
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s = tf("s");

shape = 2/s;

Req = TuningGoal .LoopShape("q~,shape);

Specify the location at which to open an additional loop when enforcing the requirement.

Req.Openings = "az";

To use this requirement to tune the Simulink model, create an slTuner interface to the
model. Identify the block to tune in the interface.

STO = slTuner(“rct_airframe2®,"MIMO Controller™);
Designate both az and q as analysis points in the sITuner interface.
addPoint(ST0,{"az","q"});

This command makes  available as an analysis location. It also allows the tuning
requirement to be enforced with the loop open at az.

You can now tune the model using Req and any other tuning requirements. For example:

[ST,fSoft] = systune(STO,Req);

Loop Shape Requirement with Crossover Range

Create a tuning requirement specifying that the open-loop response of loop identified by
"X*" cross unity gain between 50 and 100 rad/s.

Req = TuningGoal .LoopShape("X",[50,100]);
Examine the resulting requirement to see the target loop shape.

viewSpec(Req)
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Requirement 1: Minimum and maximum loop gains (CrossTol = 0.151)
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The plot shows that the requirement specifies an integral loop shape, with crossover
around 70 rad/s, the geometrical mean of the range [50,100]. The gap at 0 dB between
the minimum low-frequency gain (green region) and the maximum high-frequency gain
(red region) reflects the allowed crossover range [50,100].

See Also

looptune (for slTuner) | TuningGoal .MinLoopGain |
TuningGoal .MaxLoopGain | viewSpec | TuningGoal .Gain | slTuner | looptune
| systune | systune (for slTuner) | TuningGoal.Tracking | frd

1-30



TuningGoal.LoopShape class

How To

“Loop Shape and Stability Margin Specifications”
“Tuning Multi-Loop Control Systems”
“Tuning of a Digital Motion Control System”
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Package: TuningGoal

Linear-Quadratic-Gaussian (LQG) goal for control system tuning

Description

Use the TuningGoal . LQG object to specify a tuning requirement for quantifying control
performance as an LQG cost. It is applicable to any control structure, not just the
classical observer structure of optimal LQG control. You can use this requirement for
control system tuning with tuning commands, such as systune or looptune.

The LQG cost is given by:
J = E(z(t) QZ =(t)).

2(?) 1s the system response to a white noise input vector w(t). The covariance of w(t is
given by:
Ew@®w@)) = QW.

The vector w(t) typically consists of external inputs to the system such as noise,
disturbances, or command. The vector z(f) includes all the system variables that
characterize performance, such as control signals, system states, and outputs. E(x)
denotes the expected value of the stochastic variable x.

The cost function ¢/ can also be written as an average over time:

J = lim E(%IOTz(t)’ QZ z(t)dt).

T—oo

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-36 of the object.

Construction

Req = TuningGoal .LQG(wname,zname,QW,QZ) creates an LQG requirement. The
strings or cell arrays of strings wname and zname specify the signals making up w(t) and
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2(t). The matrices QW and QZ specify the noise covariance and performance weight. These
matrices must be symmetric nonnegative definite. Use scalar values for QW and QZ to
specify multiples of the identity matrix.

Input Arguments
wname

Noise inputs, w(t), specified as a string or a cell array of strings for vector-valued signals.
The signals available to designate as noise inputs for the tuning requirement are as
follows.

+ If you are using the requirement to tune a Simulink model of a control system, then
wname can include:
*  Any model input
* Any linearization input point in the model

Any signal identified as a Controls, Measurements, Switches, or 10s signal in
an slTuner interface associated with the Simulink model

+ If you are using the requirement to tune a generalized state-space model (genss) of a
control system using systune, then wname can include:

Any input of the control system model
Any channel of an AnalysisPoint block in the control system model
For example, if you are tuning a control system model, T, then wname can be a string

contained in T. InputName. Also, if T contains an AnalysisPoint block with a
location named X, then wname can include X.

+ If you are using the requirement to tune a controller model, CO for a plant GO, using
looptune, then wname can include:

* Any input of CO or GO
* Any channel of an AnalysisPoint block in CO or GO

If wname is a channel of an AnalysisPoint block of a generalized model, the noise input
for the requirement is the implied input associated with the switch:
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AnalysisPoint +

Zname

Performance outputs, z(¢), specified as a string or a cell array of strings for vector-
valued signals. The signals available to designate as performance outputs for the tuning
requirement are as follows.

+ If you are using the requirement to tune a Simulink model of a control system, then
zname can include:

* Any model output
Any linearization output point in the model

Any signal identified as a Controls, Measurements, Switches, or 10s signal in
an slTuner interface associated with the Simulink model

+ If you are using the requirement to tune a generalized state-space model (genss) of a
control system using systune, then zname can include:

Any output of the control system model
Any channel of an AnalysisPoint block in the control system model
For example, if you are tuning a control system model, T, then zname can be a string

contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
channel named X, then zname can include X.

+ If you are using the requirement to tune a controller model, CO for a plant GO, using
looptune, then zname can include:

Any input of CO or GO
* Any channel of an AnalysisPoint block in CO or GO

If zname is a channel of an AnalysisPoint block of a generalized model, the
performance output for the requirement is the implied output associated with the switch:
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out in

AnalysisPoint +

Qw

Covariance of the white noise input vector w(f), specified as a scalar or a matrix. Use a
scalar value to specify a multiple of the identity matrix. Otherwise specify a symmetric
nonnegative definite matrix with as many rows as there are entries in the vector w(z). A
diagonal matrix means the entries of w(t) are uncorrelated.

The covariance of w(t is given by:

Ew®w®)) = QW.

When you are tuning a control system in discrete time, the LQG requirement assumes:
Ewlklw([k]) = QWIT,.

T, is the model sample time. This assumption ensures consistent results with tuning in
the continuous-time domain. In this assumption, w(k] is discrete-time noise obtained by
sampling continuous white noise w(f) with covariance QW. If in your system wlk] is a
truly discrete process with known covariance QWd, use the value T;*QWd for the QW
value when creating the LQG goal.

Default:
Qz

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a
multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite
matrix. Use a diagonal matrix to independently scale or penalize the contribution of each
variable in z.

The performance weights contribute to the cost function according to:
J = E(z@1) QZ 2(1)).

When you use the LQG requirement as a hard goal, the software tries to drive the

cost function J < 1. When you use it as a soft goal, the cost function o/ is minimized
subject to any hard goals and its value is contributed to the overall objective function.
Therefore, select QZ values to properly scale the cost function so that driving it below 1
or minimizing it yields the performance you require.
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Default: 1

Properties

NoiseCovariance

Covariance matrix of the noise inputs w(t), specified as a matrix. The value of the
NoiseCovariance property is set by the WZ input argument when you create the LQG
requirement.

PerformanceWeight

Weights for the performance signals z(¢), specified as a matrix. The value of the
PerformanceWeight property is set by the @Z input argument when you create the
LQG requirement.

Input

Noise input signal names, specified as a cell array of strings. These strings specify the
names of the inputs of the transfer function that the tuning requirement constrains.
The initial value of the Input property is set by the wname input argument when you
construct the requirement object.

Output

Performance output signal names, specified as a cell array of strings. These strings
specify the names of the outputs of the transfer function that the tuning requirement
constrains. The initial value of the Output property is set by the zname input argument
when you construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.-Models = 2:4;
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When Models = NaN, the tuning requirement applies to all models.
Default: NaN
Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Reqg.Name = "LoopReq";

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the Hy; norm, and therefore the value of
the tuning goal, is infinite for continuous-time systems with nonzero feedthrough.
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systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = Itiblock.ss("C",1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.value = 0;
C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as I'tiblock.ss.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For the TuningGoal . LQG requirement, f(x) is given by the cost function o/:
J = E(z@1) QZ z()).

When you use the LQG requirement as a hard goal, the software tries to drive the
cost function J < 1. When you use it as a soft goal, the cost function ¢/ is minimized
subject to any hard goals and its value is contributed to the overall objective function.
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Therefore, select QZ values to properly scale the cost function so that driving it below 1
or minimizing it yields the performance you require.

See Also

systune | systune (for slTuner) | viewSpec |
TuningGoal .WeightedVariance | slTuner | evalSpec | TuningGoal .Variance

How To

. “Time-Domain Specifications”
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TuningGoal.Margins class

Package: TuningGoal

Stability margin requirement for control system tuning

Description

Use the TuningGoal -.Margins requirement object to specify a tuning requirement
for the gain and phase margins of a SISO or MIMO feedback loop. You can use this
requirement for validating a tuned control system with viewSpec. You can also use
the requirement for control system tuning with tuning commands such as systune or
looptune.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-42 of the object.

After using the requirement to tune a control system, you can visualize the requirement
and the tuned value using the viewSpec command. For information about interpreting
the margins goal, see “Interpreting Stability Margins in Control System Tuning”.

Construction

Req = TuningGoal .Margins(location,gainmargin,phasemargin) creates a
tuning requirement that specifies the minimum gain and phase margins at the specified
location in the control system.

Input Arguments

location

Location in the control system at which the minimum gain and phase margins apply,
specified as a string or cell array of strings. These strings identify one or more analysis
locations in the control system to tune. What locations are available depends on what
kind of system you are tuning:

+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an sl Tuner
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interface associated with the Simulink model. Use addPoint to add analysis points to
the sITuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u®.

AP = AnalysisPoint(“u”);

G = tf(1,[1 2D);

C = Itiblock.pid(°C","pi~);
T = feedback(G*AP*C,1);

You can use the string "u” to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

The margin requirements apply to the point-to-point, open-loop transfer function at the
specified loop-opening location. That transfer function is the open-loop response obtained
by injecting signals at the specified location, and measuring the return signals at the
same point.

If location is a cell array, then the margin requirement applies to the MIMO open-loop
transfer function.

gainmargin

Required minimum gain margin for the feedback loop, specified as a scalar value in dB.
For MIMO feedback loops, the gain margin is based upon the notion of disk margins,
which guarantee stability for concurrent gain and phase variations of +tgainmargin and
+phasemargin in all feedback channels. See loopmargin for more information about
disk margins.

phasemargin

Required minimum phase margin for the feedback loop, specified as a scalar value in
degrees.

For MIMO feedback loops, the phase margin is based upon the notion of disk margins,
which guarantee stability for concurrent gain and phase variations of +tgainmargin and
+phasemargin in all feedback channels. See loopmargin for more information about
disk margins.
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Properties
GainMargin

Required minimum gain margin for the feedback loop, specified as a scalar value in
decibels (dB).

The value of the GainMargin property is set by the gainmargin input argument when
you create the TuningGoal .Margins requirement.

PhaseMargin

Required minimum phase margin for the feedback loop, specified as a scalar value in
degrees.

The value of the PhaseMargin property is set by the phasemargin input argument when
you create the TuningGoal .Margins requirement.

ScalingOrder

Controls the order (number of states) of the scalings involved in computing MIMO
stability margins. Static scalings (ScalingOrder = 0) are used by default. Increasing
the order may improve results at the expense of increased computations. Use viewSpec
to assess the gap between optimized and actual margins. If this gap is too large, consider
increasing the scaling order. See “Interpreting Stability Margins in Control System
Tuning”.

Default: 0 (static scaling)
Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. For best results with stability margin requirements, pick a frequency band
extending about one decade on each side of the gain crossover frequencies. For example,
suppose Req is a TuningGoal .Margins requirement that you are using to tune

a system with approximately 10 rad/s bandwidth. To limit the enforcement of the
requirement, use the following command:
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Req.Focus = [1,100];

Default: [0, InT] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Location

Location at which the minimum gain and phase margins apply, specified as a string or
cell-array of strings. These strings identify one or more analysis-point locations in the
control system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal .Margins requirement.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
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getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Reqg.Name = "LoopReq";

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .Margins requirement, f(x) is given by:
f(x)=|2aS -aI|_.

S =D'[I- L(s,x)] 'D is the scaled sensitivity function.
L(s,x) is the open-loop response being shaped.
D is an automatically-computed loop scaling factor.

a is a scalar parameter computed from the specified gain and phase margin.
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Examples

SISO Margin Requirement Evaluated with Additional Loop Opening

Create a margin requirement for the inner loop of the following control system. The
requirement imposes a minimum gain margin of 5 dB and a minimum phase margin of
40 degrees.

+ +
r—( ) C, G G, Gy v

e -

T

k J

EJII.PL +

Create a model of the system. To do so, specify and connect the numeric plant models
G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the
AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and
tuning.

Gl = tf(10,[1 10D);
G2 = tf([1 2],.[1 0.2 10]);
C1 = Itiblock.pid("C","piT);
C2 = Itiblock.gain("G",1);
AP1 = AnalysisPoint("AP1%);
2 = AnalysisPoint("AP2%);
= feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement object.
Req = TuningGoal .Margins("AP2",5,40);

This requirement imposes the specified stability margins on the feedback loop identified
by the AnalysisPoint channel "AP2*, which is the inner loop.

Specify that these margins are evaluated with the outer loop of the control system open.

Req.Openings = {"AP1"};
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Adding "AP1" to the Openings property of the tuning requirements object ensures that
systune evaluates the requirement with the loop open at that location.

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then use viewSpec to validate the tuned control system against the
requirement.

MIMO Margin Requirement in Frequency Band

Create a requirement that sets minimum gain and phase margins for the loop defined by
three loop-opening locations in a control system to tune. Because this loop is defined by
three loop-opening locations, it is a MIMO loop.

The requirement sets a minimum gain margin of 10 dB and a minimum phase margin of
40 degrees, within the band between 0.1 and 10 rad/s.

Req = TuningGoal .Margins({"r", "theta”, "phi~},10,40);

The names "r*", "theta”, and "phi " must specify valid loop-opening locations in the
control system that you are tuning.

Limit the requirement to the frequency band between 0.1 and 10 rad/s.

Req.Focus = [0.1 10];

See Also

| systune (for slTuner) | looptune | systune | looptune (for slTuner) |
viewSpec | evalSpec

How To

. “Loop Shape and Stability Margin Specifications”
. “Tuning Control Systems with SYSTUNE”

. “Digital Control of Power Stage Voltage”

. “Tuning of a Two-Loop Autopilot”

. “Fixed-Structure Autopilot for a Passenger Jet”

. “Interpreting Stability Margins in Control System Tuning”
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TuningGoal.MinLoopGain class

Package: TuningGoal

Minimum loop gain constraint for control system tuning

Description

Use the TuningGoal .MinLoopGain object to enforce a minimum loop gain in a
particular frequency band. Use this requirement with control system tuning commands
such as systune or looptune.

This requirement imposes a minimum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the minimum open-loop gain as a
function of frequency (a minimum gain profile). For MIMO feedback loops, the specified
gain profile is interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum
gain constraint on the inverse of the sensitivity function, inv(S) = (I + L).

The following figure shows a typical specified minimum gain profile (dashed line) and a
resulting tuned loop gain, L (blue line). The green region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much larger
than 1, imposing a minimum gain on inv(S) is a good proxy for a minimum open-loop
gain.
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TuningGoal _.MinLoopGain and TuningGoal .MaxLoopGain specify only low-gain or
high-gain constraints in certain frequency bands. When you use these requirements,
systune and looptune determine the best loop shape near crossover. When the loop
shape near crossover is simple or well understood (such as integral action), you can use
TuningGoal . LoopShape to specify that target loop shape.

Construction

Req = TuningGoal MinLoopGain(location, loopgain) creates a tuning
requirement for boosting the gain of a SISO or MIMO feedback loop. The requirement
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specifies that the open-loop frequency response (L) measured at the specified locations
exceeds the minimum gain profile specified by loopgain.

You can specify the minimum gain profile as a smooth transfer function or sketch a
piecewise error profile using an frd model or the makeweight command. Only gain
values greater than 1 are enforced.

For MIMO feedback loops, the specified gain profile is interpreted as a lower bound on
the smallest singular value of L.

Req = TuningGoal .MinLoopGain(location,fmin,gmin) specifies a minimum gain
profile of the form loopgain = K/s (integral action). The software chooses K such that
the gain value is gmin at the specified frequency, fmin.

Input Arguments
location

Location at which the minimum open-loop gain is constrained, specified as a string or
cell array of strings. These strings identify one or more loop-opening locations in the
control system to tune. What loop-opening locations are available depends on what kind
of system you are tuning:

+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an sl Tuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the sl Tuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u”.

AP = AnalysisPoint("u®);

G = tf(1,[1 2D);
C = Itiblock.pid("C","pi");
T = feedback(G*AP*C,1);

You can use the string "u” to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the minimum gain
requirement applies to the resulting MIMO loop.
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loopgain
Minimum open-loop gain as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tF, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the
makeweight command. For example, the following frd model specifies a minimum gain
of 100 (40 dB) below 0.1 rad/s, rolling off at a rate of —20 dB/dec at higher frequencies.

loopgain = frd([100 100 10],[0 1le-1 1]);

When you use an frd model to specify loopgain, the software automatically maps your
specified gain profile to a zpk model. The magnitude of this model approximates the
desired gain profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Only gain values larger than 1 are enforced. For multi-input, multi-output (MIMO)
feedback loops, the gain profile is interpreted as a lower bound on the smallest singular
value of L. For more information about singular values, see sigma.

fmin

Frequency of minimum gain gmin, specified as a scalar value in rad/s.

Use this argument to specify a minimum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmin at the specified
frequency, fmin.

gmin
Value of minimum gain occurring at fmin, specified as a scalar absolute value.
Use this argument to specify a minimum gain profile of the form loopgain = K/s

(integral action). The software chooses K such that the gain value is gmin at the specified
frequency, fmin.

Properties
MinGain

Minimum open-loop gain as a function of frequency, specified as a SISO zpk model.
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The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Alternatively, if you
use the fmin and gmin arguments to specify the gain profile, this property is set to K/s.
The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Use viewSpec(Req) to plot the magnitude of the open-loop minimum gain profile.
Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, InT] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (False).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to false if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)
LoopScaling
Toggle for automatically scaling loop signals, specified as "on* or "off".

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to "off" to disable such scaling and shape the unscaled open-
loop response.

Default: "on*
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Location

Location at which minimum loop gain is constrained, specified as a string or cell array of
strings. These strings identify one or more loop-opening locations in the control system to
tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal .Sensitivity requirement.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
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system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.
For example, if Req is a requirement:

Reqg.Name = "LoopReq";

Default: [1]

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .MinLoopGain requirement, f(x) is given by:

f(x)= “WS (D—lsD)H

oo

Ws is the minimum loop gain profile, MaxGain. D is a diagonal scaling (for MIMO loops).
S is the sensitivity function at Location.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing
a lower bound on the open-loop transfer function, L, in a frequency band where the gain
of L is greater than 1. To see why, note that S = 1/(1 + L). For SISO loops, when |L| >>
1, | S | = 1/| L|. Therefore, enforcing the open-loop minimum gain requirement, |L| >

| Wsl, is roughly equivalent to enforcing | W,S| < 1. For MIMO loops, similar reasoning
applies, with | | S| | = 1/opin(L), where oy, is the smallest singular value.

For an example illustrating the constraint on S, see “Minimum Loop Gain as Constraint
on Sensitivity Function” on page 1-56.
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Examples

Minimum Loop Gain Requirement

Create a requirement that boosts the open-loop gain of a feedback loop to greater than a
specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified

by PILoop. Specify that the open-loop gain measured at that location exceed a minimum
gain of 10 (20 dB) below 0.1 rad/s, rolling off at a rate of -20 dB/dec at higher frequencies.
Use an frd model to sketch this gain profile.

loopgain = frd([10 10 0.1],[0 l1le-1 10]);
Req = TuningGoal .MinLoopGain("PlLoop*,loopgain);

The software converts loopgain into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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Singular Values (dB)

Requirement 1: Minimum loop gain as a function of frequency
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The green region indicates where the requirement is violated, except that gain values
less than 1 are not enforced. Therefore, this requirement only specifies a minimum gain
at frequencies below 1 rad/s.

You can use Req as an input to looptune or systune when tuning the control system.

Integral Minimum Gain Specified as Gain Value at Single Frequency

Create a requirement that specifies a minimum loop gain profile of the form L = K/ s.
The gain profile attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal .MinLoopGain("X",100,0.01);
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Singular Values (dB)

viewSpec(Req)

Requirement 1: Minimum loop gain as a function of frequency
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viewSpec confirms that the requirement is correctly specified. You can use this
requirement to tune a control system that has a loop-opening location identified as " X".
Since loop gain values less than 1 are ignored, this requirement specifies minimum gain
only below 1 rad/s, with no restriction on loop gain at higher frequency.

Minimum Loop Gain as Constraint on Sensitivity Function

Examine a minimum loop gain requirement against the tuned loop gain. A minimum loop
gain requirement is converted to a constraint on the gain of the sensitivity function at the
requirement location.
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To see this relationship between the requirement and the sensitivity function, tune the
following closed-loop system with analysis points at X1 and X2. The control system has
tunable PID controllers C1 and C2.

r—=( s PID | 2L} Pl 2+ G, [+[%]52+ G, F—v,

Create a model of the control system.

G2 = zpk(L]1.-2,3);

Gl = zpk([]1.[-1 -1 -1],10);
C20 = ltiblock.pid(*C2","pi~);
C10 = Itiblock.pid(*C1","pidT);

X1 = AnalysisPoint("X1%);

X2 = AnalysisPoint("X2");

InnerLoop = feedback(X2*G2*C20,1);
CLO = feedback(Gl*InnerLoop*C10,X1);

CLO. InputName = "r~;
CLO.OutputName = "y~;

Specify some tuning requirements, including a minimum loop gain requirement. Tune
the control system to these requirements.

Rtrack = TuningGoal .Tracking("r-,"y",10,0.01);
Rreject = TuningGoal .Gain("X2","y",0.1);

Rgain = TuningGoal .MinLoopGain("X2",100,10000);
Rgain._Openings = "X1°;

[CL,fSoft] = systune(CLO, [Rtrack,Rreject,Rgain]);
Final: Soft = 1.07, Hard = -Inf, lIterations = 82

Examine the TuningGoal .MinLoopGain requirement against the corresponding tuned
response.

viewSpec(Rgain,CL)
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Requirement 1: Minimum loop gain as a function of frequency
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The plot shows the achieved loop gain for the loop at X2 (blue line). The plot also shows
the inverse of the achieved sensitivity function, S, at the location X2 (green line). The
inverse sensitivity function at this location is given by inv(S) = I+L. Here, L is the
open-loop point-to-point loop transfer measured at X2.

The minimum loop gain requirement Rgain is constraint on inv(S), represented in
the plot by the green shaded region. The constraint on inv(S) can be thought of as a
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minimum gain constraint on L that applies where the gain of L (or the smallest singular
value of L, for MIMO loops) is greater than 1.

Requirement without Stability Constraint on Inner Loop

Create a requirement that specifies a minimum loop gain of 20 dB (100) at 50 rad/s on
the inner loop of the following control system.

+ +
= C — G,

A 4

A 4

G, G, >y

Xl <

Req = TuningGoal .MinLoopGain("X2",50,100);

Configure the requirement to apply to the loop gain of the inner loop measured with the
outer loop open.

Req.Openings = "X27;

Setting Req.Openings tells the tuning algorithm to enforce this requirement with loops
open at the specified location.

By default, tuning using TuningGoal .MinLoopGain imposes a stability requirement
as well as the minimum loop gain requirement. Practically, in some control systems

it is not possible to achieve a stable inner loop. When this occurs, remove the stability
requirement for the inner loop by setting the Stabilize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

See Also

systune (for slTuner) | TuningGoal .Gain | TuningGoal .MaxLoopGain
| TuningGoal .Margins | slTuner | looptune | systune | looptune (for
slTuner) | viewSpec | evalSpec | TuningGoal .LoopShape | sigma
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How To
. “Loop Shape and Stability Margin Specifications”

. “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
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TuningGoal.MaxLoopGain class

Package: TuningGoal

Maximum loop gain constraint for control system tuning

Description

Use the TuningGoal .MaxLoopGain object to enforce a maximum loop gain and desired
roll-off in a particular frequency band. Use this requirement with control system tuning
commands such as systune or looptune.

This requirement imposes a maximum gain on the open-loop frequency response (L) at a
specified location in your control system. You specify the maximum open-loop gain as a
function of frequency (a maximum gain profile). For MIMO feedback loops, the specified
gain profile is interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum
gain constraint on the complementary sensitivity function, 7) = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed line) and
a resulting tuned loop gain, L (blue line). The pink region represents gain profile values
that are forbidden by this requirement. The figure shows that when L is much smaller
than 1, imposing a maximum gain on 7'is a good proxy for a maximum open-loop gain.
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TuningGoal .MaxLoopGain and TuningGoal .MinLoopGain specify only high-gain
or low-gain constraints in certain frequency bands. When you use these requirements,
systune and looptune determine the best loop shape near crossover. When the loop
shape near crossover is simple or well understood (such as integral action), you can use
TuningGoal . LoopShape to specify that target loop shape.

Construction

Req = TuningGoal .MaxLoopGain(location, loopgain) creates a tuning
requirement for limiting the gain of a SISO or MIMO feedback loop. The requirement
limits the open-loop frequency response measured at the specified locations to the
maximum gain profile specified by loopgain. You can specify the maximum gain profile as
a smooth transfer function or sketch a piecewise error profile using an frd model or the
makewe ight command. Only gain values smaller than 1 are enforced.

Req = TuningGoal .MaxLoopGain(location,fmax,gmax) specifies a maximum gain
profile of the form loopgain = K/s (integral action). The software chooses K such that
the gain value is gmax at the specified frequency, fmax.
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Input Arguments
location

Location at which the maximum open-loop gain is constrained, specified as a string or
cell array of strings. These strings identify one or more loop-opening locations in the
control system to tune. What loop-opening locations are available depends on what kind
of system you are tuning:

+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an sl Tuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the sITuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u®.

AP = AnalysisPoint("u®);

G = tf(1,[1 2D);

C = Itiblock.pid("C","pi");
T = feedback(G*AP*C,1);

You can use the string "u” to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the maximum gain
requirement applies to the resulting MIMO loop.

loopgain
Maximum open-loop gain as a function of frequency.

You can specify loopgain as a smooth SISO transfer function (tF, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the

makewe ight command. For example, the following Frd model specifies a maximum gain
of 1 (0 dB) at 1 rad/s, rolling off at a rate of —20 dB/dec up to 10 rad/s, and a rate of —40
dB/dec at higher frequencies.

loopgain = frd([1 le-1 1e-3],[1 10 100]);
bodemag(loopgain)
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When you use an frd model to specify loopgain, the software automatically maps your
specified gain profile to a zpk model. The magnitude of this model approximates the
desired gain profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Only gain values smaller than 1 are enforced. For multi-input, multi-output (MIMO)
feedback loops, the gain profile is interpreted as a minimum roll-off requirement, which
1s an upper bound on the largest singular value of L. For more information about singular
values, see sigma.

fmax
Frequency of maximum gain gmax, specified as a scalar value in rad/s.
Use this argument to specify a maximum gain profile of the form loopgain = K/s

(integral action). The software chooses K such that the gain value is gmax at the specified
frequency, fmax.
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gmax
Value of maximum gain occurring at fmax, specified as a scalar absolute value.

Use this argument to specify a maximum gain profile of the form loopgain = K/s
(integral action). The software chooses K such that the gain value is gmax at the specified
frequency, fmax.

Properties

MaxGain
Maximum open-loop gain as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument loopgain onto a zpk model. The
magnitude of this zpk model approximates the desired gain profile. Alternatively, if you
use the fmax and gmax arguments to specify the gain profile, this property is set to K/s.
The software chooses K such that the gain value is gmax at the specified frequency, fmax.

Use viewSpec(Req) to plot the magnitude of the open-loop maximum gain profile.
Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where TS is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (False).
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When Stabilize is true, this requirement stabilizes the specified feedback loop, as
well as imposing gain or loop-shape requirements. Set Stabilize to false if stability
for the specified loop is not required or cannot be achieved.

Default: 1 (true)
LoopScaling
Toggle for automatically scaling loop signals, specified as "on" or "off".

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to "off" to disable such scaling and shape the unscaled open-
loop response.

Default: "on*

Location

Location at which maximum loop gain is constrained, specified as a string or cell array of
strings. These strings identify one or more loop-opening locations in the control system to

tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal .Sensitivity requirement.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.-Models = 2:4;
When Models = NaN, the tuning requirement applies to all models.

Default: NaN
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Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}

Name

Name of the requirement object, specified as a string.
For example, if Req is a requirement:

Req.Name = "LoopReq”;

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .MaxLoopGain requirement, f(x) is given by:
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£(x) = HWT (D‘lTD)H

oo

W is the reciprocal of the maximum loop gain profile, MaxGain. D is a diagonal scaling
(for MIMO loops). T is the complementary sensitivity function at Location.

Although T'is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing
an upper bound on the open-loop transfer, L, in a frequency band where the gain of L is
less than one. To see why, note that T'= L/(I + L). For SISO loops, when |L| << 1, |T|

=~ | L|. Therefore, enforcing the open-loop maximum gain requirement, |L| < 1/| Wr|, is
roughly equivalent to enforcing | W;T'| < 1. For MIMO loops, similar reasoning applies,
with | | T'| | = omax(L), where 0,,., is the largest singular value.

Examples

Maximum Loop Gain Requirement

Create a requirement that limits the maximum open-loop gain of a feedback loop to a
specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified
by PILoop. Limit the open-loop gain measured at that location to 1 (0 dB) at 1 rad/

s, rolling off at a rate of -20 dB/dec up to 10 rad/s, and a rate of -40 dB/dec at higher
frequencies. Use an frd model to sketch this gain profile.

loopgain = frd([1 le-1 1le-3],[1 10 100]);
Req = TuningGoal .MaxLoopGain(“"PlLoop®,loopgain);

The software converts loopgain into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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Singular Values (dB)

Requirement 1: Maximum loop gain as a function of frequency
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The yellow region indicates where the requirement is violated, except that gain values
greater than 1 are not enforced. Therefore, this requirement only specifies minimum roll-
off rates at frequencies above 1 rad/s.

You can use Req as an input to looptune or systune when tuning the control system.

Integral Loop Gain Specified as Gain Value at Single Frequency

Create a requirement that specifies a maximum loop gain of the form L = K/s . The
maximum gain attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal .MaxLoopGain("X",100,0.01);
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viewSpec(Req)

Requirement 1: Maximum loop gain as a function of frequency
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viewSpec confirms that the requirement is correctly specified. You can use this
requirement to tune a control system that has a loop-opening location identified as *X".
Since loop gain values greater than 1 are ignored, this requirement specifies a rolloff of
20 dB/decade above 1 rad/s, with no restriction on loop gain below that frequency.

Requirement without Stability Constraint on Inner Loop

Create a requirement that specifies a maximum loop gain of —20 dB (0.01) at 100 rad/s on
the inner loop of the following control system.
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X

Req = TuningGoal .MaxLoopGain("X2",100,0.01);

Configure the requirement to apply to the loop gain of the inner loop measured with the
outer loop open.

Req.Openings = "X27;

Setting Req.Openings tells the tuning algorithm to enforce this requirement with loops
open at the specified location.

By default, tuning using TuningGoal .MaxLoopGain imposes a stability requirement
as well as the maximum loop gain requirement. Practically, in some control systems
it is not possible to achieve a stable inner loop. When this occurs, remove the stability
requirement for the inner loop by setting the Stabi lize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

See Also

looptune (for slTuner) | TuningGoal .Gain | TuningGoal .MinLoopGain |
TuningGoal .Margins | slTuner | looptune | systune | systune (for slTuner)
| viewSpec | evalSpec | TuningGoal .LoopShape | sigma

How To
. “Loop Shape and Stability Margin Specifications”

. “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
. “MIMO Control of Diesel Engine”
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. “Tuning of a Two-Loop Autopilot”
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TuningGoal.Overshoot class

Package: TuningGoal

Overshoot constraint for control system tuning

Description

Use the TuningGoal .Overshoot object to limit the overshoot in the step response from
specified inputs to specified outputs of a control system. Use this requirement for control
system tuning with tuning commands such as systune or looptune.

Construction

Req = TuningGoal .Overshoot(inputname,outputname,maxpercent) creates

a tuning requirement for limiting the overshoot in the step response between the
specified signal locations. The scalar maxpercent specifies the maximum overshoot as a
percentage.

When you use TuningGoal .Overshoot for tuning, the software maps overshoot
constraints to peak gain constraints assuming second-order system characteristics.
Therefore, the mapping is only approximate for higher-order systems. In addition, this
requirement cannot reliably reduce the overshoot below 5%.

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.
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* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use

getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u"®. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint "

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an sITuner interface associated with the Simulink
model. Use addPoint to add analysis points to the slTuner interface. Use
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getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y*. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint -

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

maxpercent

Maximum percent overshoot, specified as a scalar value. For example, the following code
specifies a maximum 5% overshoot in the step response from "r* to "y".

Req = TuningGoal .Overshoot("r=","y",5);

TuningGoal .OverShoot cannot reliably reduce the overshoot below 5%.

Properties

MaxOvershoot

Maximum percent overshoot, specified as a scalar value. For example, the scalar value
5 means the overshoot should not exceed 5%. The initial value of the MaxOvershoot
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property is set by the maxpercent input argument when you construct the requirement
object.

InputScaling
Reference signal scaling, specified as a vector of positive real values.

For a MIMO tuning requirement, when the choice of units results in a mix of small

and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {"y1", "y2"} track
reference signals {"r1", "r2"}. Suppose further that you require the outputs to

track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from rl to y2 and r2 and y1 below
0.1. However, if rl is 100 times larger than r2, the gain from rl to y2 must be less than
0.001 to ensure that rl changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScal ing property as follows.

Req. InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
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initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name

Name of the requirement object, specified as a string.
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For example, if Req is a requirement:
Reqg.Name = "LoopReq";

Default: []

Examples

Overshoot Constraint

Create a requirement that limits the overshoot of the step response from signals named
"r* to "y" in a control system to 8 percent.

Req = TuningGoal .Overshoot("r*","y",8);
You can use Req as an input to looptune or systune when tuning the control system.

Configure the requirement to apply only to the second model in a model array to tune.
Also, configure the requirement to be evaluated with a loop open in the control system.

Req.Models = 2;
Req.Openings = "OuterLoop”;

Setting the Models property restricts application of the requirement to the second model
in an array, when you use the requirement to tune an array of control system models.
Setting the Openings property specifies that requirement is evaluated with a loop
opened at the location in the control system identified by "OuterLoop”.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal .Overshoot, f(x) reflects the relative satisfaction or violation of the

goal. The percent deviation from f(x) = 1 roughly corresponds to the percent deviation
from the specified overshoot target. For example, f(x) = 1.2 means the actual overshoot
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exceeds the target by roughly 20%, and f(x) = 0.8 means the actual overshoot is about
20% less than the target.

TuningGoal .Overshoot uses ||T||°° as a proxy for the overshoot, based on second-order

model characteristics. Here, T is the closed-loop transfer function that the requirement
constrains. The overshoot is tuned in the range from 5% (||T||w =1) to 100% (||T||w).

TuningGoal .Overshoot is ineffective at forcing the overshoot below 5%.

See Also

systune (for slTuner) | TuningGoal .Gain | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | TuningGoal .Sensitivity | slTuner

How To
. “Time-Domain Specifications”
. “Multi-Loop PID Control of a Robot Arm”
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TuningGoal.Poles class

Package: TuningGoal

Constraint on control system dynamics

Description

Use the TuningGoal .Poles object to specify a tuning requirement for constraining

the closed-loop dynamics of a control system or of specific feedback loops within the
control system. You can use this requirement for control system tuning with tuning
commands, such as systune or looptune. A TuningGoal .Poles requirement can
ensure a minimum decay rate or minimum damping of the poles of the control system or
loop. The requirement can also eliminate fast dynamics in the tuned system.

Construction

Req = TuningGoal.Poles(mindecay,mindamping,maxfreq) creates a default
template for constraining the closed-loop pole locations. The minimum decay rate,
minimum damping constant, and maximum natural frequency define a region of the
complex plane in which poles of the component must lie. Set mindecay = 0, mindamping
=0, or maxfreq = Inf to skip any of the three constraints.

Req = TuningGoal.Poles(location,mindecay,mindamping,maxfreq) constrains
the poles of the sensitivity function measured at a specified location in the control
system. (See getSensitivity for information about sensitivity functions.) Use this
syntax to narrow the scope of the requirement to a particular feedback loop.

If you want to constrain the poles of the system with one or more feedback loops opened,
set the Openings property. To limit the enforcement of this requirement to poles having
natural frequency within a specified frequency range, set the Focus property. (See
“Properties” on page 1-82.)
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Input Arguments

mindecay

Minimum decay rate of poles of tunable component, specified as a nonnegative scalar
value in the frequency units of the control system model you are tuning.

When you tune the control system using this requirement, the closed-loop poles of the
control system are constrained to satisfy:

* Re(s) < -mindecay, for continuous-time systems.

+ log(]z]) < -mindecay*Ts, for discrete-time systems with sample time Ts.
Set mindecay = 0 to impose no constraint on the decay rate.
mindamping

Desired minimum damping ratio of the closed-loop poles, specified as a value between 0
and 1.

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -
mindamping*|s]. In discrete time, the damping ratio is computed using s=log(z)/Ts.

Set mindamping = 0 to impose no constraint on the damping ratio.
maxfreq

Desired maximum natural frequency of closed-loop poles, specified as a scalar value in
the frequency units of the control system model you are tuning.

Poles are constrained to satisfy |s] < maxfreq for continuous time, or [ log(z)] <
maxfreq*Ts for discrete-time systems with sample time Ts. This constraint prevents
fast dynamics in the closed-loop system.

Set maxfreq = Inf to impose no constraint on the natural frequency.

location

Location at which poles are assessed, specified as a string or cell array of strings. When

you use this input, the requirement constrains the poles of the sensitivity function
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measured at this location. (See getSensitivity for information about sensitivity
functions.) What locations are available depends on what kind of system you are tuning:

+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an sl Tuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the slTuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.

+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u”.

AP = AnalysisPoint("u®);

G = tf(1,[1 2D);
C = Itiblock.pid("C","pi");
T = feedback(G*AP*C,1);

You can use the string "u” to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array, then the sensitivity requirement applies to the MIMO loop.

Properties

MinDecay

Minimum decay rate of closed-loop poles of tunable component, specified as a positive
scalar value in the frequency units of the control system you are tuning. The initial value
of this property is set by the mindecay input argument.

When you tune the control system using this requirement, closed-loop poles are
constrained to satisfy Re(s) < -MinDecay for continuous-time systems, or log(]z|)
< -MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal .Poles requirement. Change
the minimum decay rate to 0.001:

Req-MinDecay = 0.001;

Default: 0
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MinDamping

Desired minimum damping ratio of closed-loop poles, specified as a value between 0 and
1. The initial value of this property is set by the mindamping input argument.

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -
MinDamping*|s]. In discrete time, the damping ratio is computed using s=log(z)/Ts.

Default: 0
MaxFrequency

Desired maximum natural frequency of closed-poles, specified as a scalar value in the
frequency units of the control system model you are tuning. The initial value of this
property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy |s|] < maxfreq for continuous-time
systems, or | log(2)| < maxfreq*Ts for discrete-time systems with sample time Ts.
This constraint prevents fast dynamics in the tuned control system.

You can use dot notation to change the value of this property after you create the
requirement. For example, suppose Req is a TuningGoal .ControllerPoles
requirement. Change the maximum frequency to 1000:

Req.MaxFrequency = 1000;
Default: Inf
Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the
model sample time.
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Location

Location at which poles are assessed, specified as a string or cell array of strings that
identify one or more analysis-point locations in the control system to tune.

The value of the Location property is set by the location input argument when you
create the TuningGoal .Poles requirement.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.
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Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Req.Name = "LoopReq”;

Default: []

Examples

Constrain Closed-Loop Dynamics of Specified Loop of System to Tune

Create a requirement that constrains the inner loop of the following control system to be
stable and free of fast dynamics. Specify that the constraint is evaluated with the outer
loop open.

+ -
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T

i i
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AP,
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Create a model of the system. To do so, specify and connect the numeric plant models,
G1 and G2, and the tunable controllers C1 and C2. Also, create and connect the
AnalysisPoint blocks, AP1 and AP2, which mark points of interest for analysis and
tuning.

G1 = tf(10,[1 10]);

G2 = tf([1 2],.[1 0.2 10]);
Cl1 = Itiblock.pid(°C","piT);
C2 = Itiblock.gain("G",1);

AP1 = AnalysisPoint("AP1");
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AnalysisPoint("AP2%);

AP2 =
T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the dynamics of the closed-loop poles.

Restrict the poles of the inner loop to the region Re(s) < —0. L |s| < 30,

Req = TuningGoal .Poles(0.1,0,30);

Setting the minimum damping to zero imposes no constraint on the damping constants
for the poles.

Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.Openings = "AP1";

When you tune T using this requirement, the constraint applies to the poles of the entire
control system evaluated with the loop open at 'AP1'. In other words, the poles of the
inner loop plus the poles of C1 and G1 are all considered.

After you tune T, you can use viewSpec to validate the tuned control system against the
requirement.,

Constrain Dynamics of Specified Feedback Loop

Create a requirement that constrains the inner loop of the system of the previous
example to be stable and free of fast dynamics. Specify that the constraint is evaluated
with the outer loop open.

Create a tuning requirement that constrains the dynamics of the inner feedback loop,

the loop identified by AP2. Restrict the poles of the inner loop to the region Re(s) < —0. L
|s| < 30

Req = TuningGoal .Poles("AP2",0.1,0,30);
Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.Openings = "AP1";

When you tune T using this requirement, the constraint applies only to the poles of

the inner loop, evaluated with the outer loop open. In this case, since G1 and C1 do not
contribute to the sensitivity function at AP2 when the outer loop is open, the requirement
constrains only the poles of G2 and C2.
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After you tune T, you can use viewSpec to validate the tuned control system against the
requirement.

Tips

+ TuningGoal .Poles restricts the closed-loop dynamics of the tuned control system.
To constrain the dynamics or ensure the stability of a single tunable component, use
TuningGoal .ControllerPoles.

Algorithms

When you use a TuningGoal object to specify a tuning requirement, the software
converts the requirement into a normalized scalar value f(x). x is the vector of free
(tunable) parameters in the control system. The software then adjusts the parameter
values to minimize f(x), or to drive f(x) below 1 if the tuning requirement is a hard
constraint.

For TuningGoal .Poles, f(x) reflects the relative satisfaction or violation of the goal.
For example, if you attempt to constrain the closed-loop poles of a feedback loop to a
minimum damping of { = 0.5, then:

*  f(x) = 1 means the smallest damping among the constrained poles is { = 0.5 exactly.

*  f(x) = 1.1 means the smallest damping { = 0.5/1.1 = 0.45, roughly 10% less than the
target.

* f(x) = 0.9 means the smallest damping { = 0.5/0.9 = 0.55, roughly 10% better than the
target.

See Also

looptune | looptune (for slTuner) | TuningGoal .ControllerPoles |
systune | systune (for slTuner) | viewSpec | evalSpec | Itiblock._tf |
Itiblock.ss

How To
. “System Dynamics Specifications”

. “Digital Control of Power Stage Voltage”
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. “Multi-Loop Control of a Helicopter”
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TuningGoal.Rejection class

Package: TuningGoal

Disturbance rejection requirement for control system tuning

Description

Use the TuningGoal .Rejection object to specify the minimum attenuation of a
disturbance injected at a specified location in a control system. This requirement helps
you tune control systems with tuning commands such as systune or looptune.

When you use a TuningGoal .Rejection requirement, the software attempts to tune
the system so that the attenuation of a disturbance at the specified location exceeds the
minimum attenuation factor you specify. This attenuation factor is the ratio between the
open- and closed-loop sensitivities to the disturbance and is a function of frequency. You
can achieve disturbance attenuation only inside the control bandwidth. The loop gain
must be larger than one for the disturbance to be attenuated (attenuation factor > 1).

Construction

Req = TuningGoal .Rejection(distloc,attfact) creates a tuning requirement
for rejecting a disturbance entering at distloc. This requirement constrains the minimum
disturbance attenuation factor to the frequency-dependent value, attfact.

Input Arguments
distloc

Disturbance location, specified as a string or a cell array of strings for vector-valued
signals.

+ If you are using the requirement to tune a Simulink model of a control system,
then distloc can include any signal identified as an analysis point in an sITuner
interface associated with the Simulink model. Use addPoint to identify such
locations in the interface.
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+ If you are using the requirement to tune a generalized state-space model (genss) with
systune or looptune, then inputname can include any AnalysisPoint channel
in the model. For example, if you are tuning a control system model, T, that contains
an AnalysisPoint block with a channel named X, then distloc can include X. The
disturbance location is the implied input associated with the analysis point:

out imn

AnalysizPoint

attfact
Attenuation factor as a function of frequency, specified as a numeric LTI model.

The TuningGoal .Rejection requirement constrains the minimum disturbance
attenuation to the frequency-dependent value attfact. You can specify attfact as a smooth
transfer function (tF, zpk, or ss model). Alternatively, you can specify a piecewise

gain profile using a Frd model. For example, the following code specifies an attenuation
factor of 100 (40 dB) below 1 rad/s, gradually dropping to 1 (0 dB) past 10 rad/s, for a
disturbance injected at u.

attfact = frd([100 100 1 1],[0 1 10 100]);
Req = TuningGoal .Rejection("u”,attfact);
bodemag(attfact)
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Bode Diagram
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When you use an frd model to specify attfact, the gain profile is automatically mapped
onto a zpk model. The magnitude of this zpk model approximates the desired gain
profile. Use viewSpec(Req) to visualize the resulting attenuation profile.

Properties

MinAttenuation

Minimum disturbance attenuation as a function of frequency, expressed as a SISO zpk
model.

The software automatically maps the attfact input argument to a zpk model. The
magnitude of this zpk model approximates the desired attenuation factor and is stored
in the MinAttenuation property. Use viewSpec(Req) to plot the magnitude of
MinAttenuation.
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Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, InT] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

LoopScaling
Toggle for automatically scaling loop signals, specified as "on” or "off".

For multiloop or MIMO disturbance rejection requirements, the feedback channels are
automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-
loop transfer function. Set LoopScaling to "off" to disable such scaling and shape the
unscaled open-loop response.

Default: "on"
Location

Location of disturbance, specified as a string or cell array of strings that identify
model inputs or analysis-point locations marked in the model. The initial value of
the Location property is set by the distloc input argument when you construct the
requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:
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Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Reqg.Name = "LoopReq”;

Default: [1]

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the requirement is converted into a normalized scalar value f(x). In this
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case, x is the vector of free (tunable) parameters in the control system. The parameter
values are adjusted automatically to minimize f(x) or drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .Rejection requirement, f(x) is given by:
f(x)= max"W(ja))S(j(o,x)".
we Q

W(jw) is the rational transfer function of the MinAttenuation property. This transfer
function’s magnitude approximates the minimum disturbance attenuation that you
specify for the requirement. S(jw,x) is the closed-loop sensitivity function measured at the
disturbance location. Q is the frequency interval over which the requirement is enforced,
specified in the Focus property.

Examples

Constant Minimum Attenuation in Frequency Band

Create a tuning requirement that enforces a attenuation of at least a factor of 10 between
0 and 5 rad/s. The requirement applies to a disturbance entering a control system at a
point identified as "u”.

Req = TuningGoal .Rejection("u~,10);
Req.-Name = "Rejection spec”;
Req.Focus = [0 5]

Frequency-Dependent Attenuation Profile

Create a tuning requirement that enforces an attenuation factor of at least 100 (40 dB)
below 1 rad/s, gradually dropping to 1 (0 dB) past 10 rad/s. The requirement applies to a
disturbance entering a control system at a point identified as "u”.

attfact = frd(J100 100 1 1],[0 1 10 100]);
Req = TuningGoal .Rejection("u”,attfact);

These commands use a frd model to specify the minimum attenuation profile as a
function of frequency. The minimum attenuation of 100 below 1 rad/s, together with the
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Attenuation factors (abs)

minimum attenuation of 1 at the frequencies of 10 and 100 rad/s, specifies the desired
rolloff of the requirement.

attfact is converted into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)

Requirement 1: Disturbance attenuation as a function of frequency

1o’ 3
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L

102 11 1g° 10’ 10 107

Frequency (rad/s)

The yellow region indicates where the requirement is violated.

See Also

systune (for slTuner) | TuningGoal .Tracking | looptune | viewSpec |
systune | looptune (for slTuner) | TuningGoal .LoopShape | slTuner
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How To

“Time-Domain Specifications”

“Decoupling Controller for a Distillation Column”

“Tuning of a Two-Loop Autopilot”
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TuningGoal.Sensitivity class

Package: TuningGoal

Sensitivity requirement for control system tuning

Description

Use the TuningGoal .Sensitivity object to limit the sensitivity of a feedback loop to
disturbances. Constrain the sensitivity to be smaller than one at frequencies where you
need good disturbance rejection. Use this requirement for control system tuning with
tuning commands such as systune or looptune.

Construction

Req = TuningGoal.Sensitivity(location,maxsens) creates a tuning
requirement for limiting the sensitivity to disturbances entering a feedback loop at the
specified location. maxsens specifies the maximum sensitivity as a function of frequency.
You can specify the maximum sensitivity profile as a smooth transfer function or sketch
a piecewise error profile using an frd model or the makeweight command.

See getSensitivity for more information about sensitivity functions.)

Input Arguments
location

Location at which the sensitivity to disturbances is constrained, specified as a string or
cell array of strings that identify one or more locations in the control system to tune.
What locations are available depends on what kind of system you are tuning:

+ If you are tuning a Simulink model of a control system, you can use any linear
analysis point marked in the model, or any linear analysis point in an sl Tuner
interface associated with the Simulink model. Use addPoint to add analysis points to
the sITuner interface. Use getPoints to get the list of analysis points available in
an slTuner interface to your model.
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+ If you are tuning a generalized state-space (genss) model of a control system, you
can use any AnalysisPoint location in the control system model. For example, the
following code creates a PI loop with an analysis point at the plant input "u®.

AP = AnalysisPoint(“u”);

G = tf(1,[1 2D);

C = Itiblock.pid(°C","pi~);
T = feedback(G*AP*C,1);

You can use the string "u” to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array, then the sensitivity requirement applies to the MIMO loop.

maxsens
Maximum sensitivity to disturbances as a function of frequency.

You can specify maxsens as a smooth SISO transfer function (tf, zpk, or ss model).
Alternatively, you can sketch a piecewise gain profile using a frd model or the
makewe ight command. For example, the following frd model specifies a maximum
sensitivity of 0.01 (—40 dB) at 1 rad/s, increasing to 1 (0 dB) past 50 rad/s.

maxsens = frd([0.01 1 17],[1 50 100]);
bodemag(maxsens)
ylim([-45,5])
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Bode Diagram
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When you use an frd model to specify maxsens, the software automatically maps your
specified gain profile to a zpk model whose magnitude approximates the desired gain
profile. Use viewSpec(Req) to plot the magnitude of that zpk model.

Properties

MaxSensitivity
Maximum sensitivity as a function of frequency, specified as a SISO zpk model.
The software automatically maps the input argument maxsens onto a zpk model. The

magnitude of this zpk model approximates the desired gain profile. Use viewSpec(Req)
to plot the magnitude of the zpk model MaxSensitivity.
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Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Re( is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command.:

Req.Focus = [1,100];

Default: [0, InT] for continuous time; [0,pi/Ts] for discrete time, where Ts is the
model sample time.

LoopScaling
Toggle for automatically scaling loop signals, specified as "on" or "off".

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled
to equalize the off-diagonal terms in the open-loop transfer function (loop interaction
terms). Set LoopScaling to "off" to disable such scaling and shape the unscaled
sensitivity function.

Default: "on*
Location

Location of disturbance, specified as a string or cell array of strings that identify
analysis-point locations marked in the model. The initial value of the Location property
is set by the location input argument when you construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:
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Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Reqg.Name = "LoopReq”;

Default: [1]

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
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where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .Sensitivity requirement, f(x) is given by:

1
‘ MaxSensitivity

)= S(s.%)

oo

S(s,x) is the sensitivity function of the control system at location.

Examples

Disturbance Sensitivity at Plant Input

Create a requirement that limits the sensitivity to disturbance at the plant input of the
following control system. The control system contains an AnalysisPoint block at the
plant input named " X".

+

r C X G >y

Specify a maximum sensitivity of 0.01 (—40 dB) at 1 rad/s, increasing to 1 (0 dB) past 10
rad/s. Use an frd model to sketch this target sensitivity.

maxsens = frd([0.01 1 1],[1 10 100]);
Req = TuningGoal .Sensitivity("X" ,maxsens);

The software converts maxsens into a smooth function of frequency that approximates
the piecewise-specified requirement. Display the requirement using viewSpec.

viewSpec(Req)
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Sensitivity (dB)

Requirement 1: Sensitivity as a function of frequency
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The yellow region indicates where the requirement is violated.

You can use Req as an input to looptune or systune when tuning the control system.

Requirement with Limited Frequency Range and Model Application

Create a requirement that specifies a maximum sensitivity of 0.1 (10%) at frequencies
below 5 rad/s. Configure the requirement to apply only to the second and third plant
models.

Req = TuningGoal .Sensitivity("u”,0.1);

Req.Focus = [0 5];
Req.-Models = [2 3];

1-103



] Class Reference

1-104

You can use Req as an input to looptune or systune when tuning a control system that
has an analysis point called "u®. Setting the Focus property limits the application of the
requirement to frequencies between 0 and 5 rad/s. Setting the Model's property restricts
application of the requirement to the second and third models in an array, when you use
the requirement to tune an array of control system models.

See Also

looptune (for slTuner) | TuningGoal .Gain | TuningGoal .Rejection |
TuningGoal .MaxLoopGain | looptune | systune | systune (for slTuner) |
viewSpec | evalSpec | TuningGoal .LoopShape | TuningGoal .MinLoopGain |
slTuner

How To

. “Frequency-Domain Specifications”
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TuningGoal.StepRejection class

Package: TuningGoal

Step disturbance rejection requirement for control system tuning

Description

Use the TuningGoal . StepRejection object to specify how a step disturbance injected
at a specified location in your control system affects the signal at a specified output
location. Use this requirement with control system tuning commands such as systune or
looptune.

You can specify the desired response in time-domain terms of peak value, settling time,
and damping ratio. Alternatively, you can specify the response as a stable reference
model having DC-gain. In that case, the tuning goal is to reject the disturbance as well as
or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use
TuningGoal .Rejection.

Construction

Req = TuningGoal.StepRejection(inputname,outputname,refsys) creates

a tuning requirement that constrains how a step disturbance injected at a location
inputname affects the response at outputname. The requirement is that the disturbance
be rejected as well as or better than the reference system. inputname and outputname
can describe a SISO or MIMO response of your control system. For MIMO responses, the
number of inputs must equal the number of outputs.

Req = TuningGoal.StepRejection(inputname,outputname,peak,tSettle)
specifies an oscillation-free response in terms of a peak value and a settling time.

Req = TuningGoal.StepRejection(inputname,outputname,peak,tSettle,
zeta) allows for damped oscillations with a damping ratio of at least zeta.
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Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an sITuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u". Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysizPoint

Lo

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

*  Any model output.

* Any linear analysis point marked in the model.

+ Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysizPoint n

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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refsys

Reference system for target step rejection, specified as a SISO dynamic system model,
such as a tF, zpk, or ss model. refsys must be stable and proper, and must have zero
DC gain. This restriction ensures perfect rejection of the steady-state disturbance.

refsys can be continuous or discrete. If refsys is discrete, it can include time delays
which are treated as poles at z = 0.

For best results, refsys and the open-loop response from the disturbance to the output
should have similar gains at the frequency where the reference model gain peaks. You
can check the peak gain and peak frequency using getPeakGain. For example:

[gmax,fmax] = getPeakGain(refsys);

Use getlOTransfer to extract the open-loop response from the disturbance to the
output.

peak
Peak absolute value of target response to disturbance, specified as a scalar value.
tSettle

Target settling time of the response to disturbance, specified as a positive scalar value, in
the time units of the control system you are tuning.

zeta

Minimum damping ratio of oscillations in the response to disturbance, specified as a
value between 0 and 1.

Default: 1

Properties

ReferenceModel

Reference system for target response to step disturbance, specified as a SISO (zpk)
model. The step response of this model specifies how the output signals specified by
outputname should respond to the step disturbance at inputname.
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If you use the refsys input argument to create the tuning requirement, then the value of
ReferenceModel is zpk(refsys).

If you use the peak, tSample, and zeta input arguments, then ReferenceModel is a zpk
representation of the first-order or second-order transfer function whose step response
has the specified characteristics.

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when

the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, 7(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when

the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, '7(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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Input

Names of disturbance input locations, specified as a string or cell array of strings.
This property is populated by the inputname argument when you create the tuning
requirement.

Output

Names of locations at which response to step disturbance is measured, specified as a
string or cell array of strings. This property is populated by the outputname argument
when you create the tuning requirement.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.-Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
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system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.
For example, if Req is a requirement:

Reqg.Name = "LoopReq";

Default: [1]

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x 1s the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

The TuningGoal .StepRejection requirement aims to keep the gain from disturbance
to output below the gain of the reference model. The scalar value of the requirement f(x)
is given by:

T(s,x) is the closed-loop transfer function from Input to Output. T}.As) is the reference

model. || . ||°° denotes the H,, norm (see norm).

Examples

Specify First-Order or Second-Order Step Disturbance Response Characteristics

Create a requirement that specifies the step disturbance response in terms of peak time-
domain response, settling time, and damping of oscillations.
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Suppose you want the response at "y " to a disturbance injected at "d" to

never exceed an absolute value of 0.25, and to settle within 5 seconds. Create a
TuningGoal . StepRejection requirement that captures these specifications and also
specifies non-oscillatory response.

Reql = TuningGoal.StepRejection("d","y",0.25,5);

Omitting an explicit value for the damping ratio, zeta, is equivalent to setting zeta = 1.
Therefore, Req specifies a non-oscillatory response. The software converts the peak value
and settling time into a reference transfer function whose step response has the desired
time-domain profile. This transfer function is stored in the ReferenceModel property of
Req.

Reql.ReferenceModel

ans =
0.92883 s

(s+1.367)72

Continuous-time zero/pole/gain model.

Confirm the target response by displaying Req.

figure()
viewSpec(Reql)
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0.

Amplitude

Requirement 1: Worst response to step disturbance
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Suppose your application can tolerate oscillations provided the damping ratio is less than

0.4. Create a requirement that specifies this disturbance response.

Reg2 = TuningGoal .StepRejection("d","y",0.25,5,0.4);

figure()
viewSpec(Req2)
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Requirement 1: Worst response to step disturbance
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Step Disturbance Rejection with Custom Reference Model

Create a requirement that specifies the step disturbance response as a transfer function.

Suppose you want the response to a disturbance injected at an analysis point d in your
control system and measured at a point "y " to be rejected at least as well as the transfer

function
5

His)= .
(s) s°+ 25+ 1
Create a TuningGoal . StepRejection requirement.

H=tf([1 0],[1 2 1]);
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Amplitude

Re

q = TuningGoal .StepRejection("d","y",H);

Display the requirement.

viewSpec(Req)
Requirement 1: Worst response to step disturbance
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The plot displayed by viewSpec shows the step response of the specified transfer
function. This response is the target time-domain response to disturbance.

See Also

TuningGoal .Gain | TuningGoal .LoopShape | evalSpec | looptune | looptune
(for slTuner) | slTuner | systune | systune (for slTuner) | viewSpec
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More About

“Time-Domain Specifications”

“Tuning Control Systems with SYSTUNE”

“Tuning Control Systems in Simulink”
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TuningGoal.StepTracking class

Package: TuningGoal

Step response requirement for control system tuning

Description

Use the TuningGoal . StepTracking object to specify a target step response from
specified inputs to specified outputs of a control system. Use this requirement with
control system tuning commands such as systune or looptune.

Construction

Req = TuningGoal .StepTracking(inputname,outputname, refsys) creates

a tuning requirement that constrains the step response between the specified signal
locations to match the step response of a stable reference system, refsys. The constraint
1s satisfied when the relative difference between the tuned and target responses falls
within a tolerance specified by the RelGap property of the requirement (see “Properties”
on page 1-121). inputname and outputname can describe a SISO or MIMO response of
your control system. For MIMO responses, the number of inputs must equal the number
of outputs.

Req = TuningGoal.StepTracking(inputname,outputname,tau) specifies the
desired step response as a first-order response with time constant tau:

1/tau

Req.ReferenceModel = —————.
s+1/tau

Req = TuningGoal.StepTracking(inputname,outputname, tau,overshoot)
specifies the desired step response as a second-order response with natural period tau,
natural frequency 1/tau, and percent overshoot overshoot:

(1/ tau)?
s2+2 (zeta /tau)s +(1/ tau)2

Req.ReferenceModel =
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The damping is given by zeta = cos(atan2(pi,-log(overshoot/100))).

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u". Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint

e
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint

e

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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refsys

Reference system for target step response, specified as a dynamic system model, such as
a tf, zpk, or ss model. refsys must be stable and must have DC gain of 1 (zero steady-
state error).

refsys can be continuous or discrete. If refsys is discrete, it can include time delays
which are treated as poles at z = 0.

refsys can be MIMO, provided that it is square and that its DC singular value (sigma)
is 1. If refsys is a MIMO model, then its number of inputs and outputs must match the
dimensions of inputname and outputname.

For best results, refsys should also include intrinsic system characteristics such as non-
minimum-phase zeros (undershoot).

tau
Time constant or natural period of target step response, specified as a positive scalar.

If you use the syntax Req =

TuningGoal .StepTracking(inputname,outputname,tau) to specify a first-order
target response, then tau is the time constant of the response decay. In that case, the
target is the step response of the system given by:

1/tau

Req.ReferenceModel = —————.
s+1/tau

If you use the syntax Req =

TuningGoal .StepTracking(inputname,outputname, tau,overshoot) to specify
a second-order target response, then tau is the inverse of the natural frequency of the
response. In that case, the target is the step response of the system given by:

(1/ tau)?
s% +2(zeta / tau)s +(1/ tau)2

Req.ReferenceModel =

The damping of the system is given by zeta = cos(atan2(pi,-
log(overshoot/100))).

overshoot

Percent overshoot of target step response, specified as a scalar value in the range (0,100).
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Properties

ReferenceModel

Reference system for target step response, specified as a SISO or MIMO state-space (SS)
model. When you use the requirement to tune a control system, the step response from
inputname to outputname is tuned to match this target response to within the tolerance
specified by the RelGap property.

If you use the refsys input argument to create the tuning requirement, then the value of
ReferenceModel is ss(refsys).

If you use the tau or tau and overshoot input arguments, thenReferenceModel is a
state-space representation of the corresponding first-order or second-order transfer
function.

ReferenceModel must be stable and have unit DC gain (zero steady-state error). For
best results, ReferenceModel should also include intrinsic system characteristics such
as non-minimum-phase zeros (undershoot).

RelGap

Maximum relative matching error, specified as a positive scalar value. This property
specifies the matching tolerance as the maximum relative gap between the target and
actual step responses. The relative gap is defined as:

gap = "y(t)_yref (t)||2 ‘
"1_'y”f(tm2

¥(@) — ¥re(t) 1s the response mismatch, and 1 — y,.Af) is the step-tracking error of the target

model. || . ||2 denotes the signal energy (2-norm).

Increase the value of RelGap to loosen the matching tolerance.
Default: 0.1
InputScaling

Reference signal scaling, specified as a vector of positive real values.
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For a MIMO tuning requirement, when the choice of units results in a mix of small

and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {"y1", "y2"} track
reference signals {"r1", "r2"}. Suppose further that you require the outputs to

track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from rl to y2 and r2 and y1 below
0.1. However, if rl is 100 times larger than r2, the gain from rl to y2 must be less than
0.001 to ensure that rl changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScal ing property as follows.

Req. InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models

Models to which the tuning requirement applies, specified as a vector of indices.
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Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Req.Name = "LoopReq”;

Default: []
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Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
Here, x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal . StepTracking requirement, f(x) is given by:

HT(S, x) - 1 ReferenceModel
s

2

1 (ReferenceModel - I)
s

flx)=
RelGap

2

T(s,x) is the closed-loop transfer function from Input to Output with parameter values x.

|| : ||2 denotes the H; norm (see norm).

Examples

Step Response Requirement with Specified Tolerance

Create a requirement for the step response from a signal named "r" to a signal named
"y". Constrain the step response to match the transfer function H = 10/(s+10), but allow
20% relative variation between the target the tuned responses.

H = tFf(10,[1 10]);
Req = TuningGoal .StepResp("r*,"y",H);

By default, this requirement allows a relative gap of 0.1 between the target and
tuned responses. To change the relative gap to 20%, set the RelGap property of the
requirement,

Req.RelGap = 0.2;
Examine the requirement.

viewSpec(Req);
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Amplitude

Requirement 1: Target response to step command
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The dashed line shows the target step response specified by this requirement. You can
use this requirement to tune a control system model, T, that contains valid input and
output locations named "r*® and "y". If you do so, the command viewSpec(Req,T)
plots the achieved step response from "r® to "y " for comparison to the target response.

First-Order Step Response With Known Time Constant

Create a requirement that specifies a first-order step response with time constant of
5 seconds. Create the requirement for the step response from a signal named "r* to a
signal named "y".

Req = TuningGoal .StepResp("r-,"y",5);
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When you use this requirement to tune a control system model, T, the time constant 5
is taken to be expressed in the prevailing units of the control system. For example, if T
1s a genss model and the property T.TimeUnit is "seconds”, then this requirement
specifies a target time constant of 5 seconds for the response from the input "r* to the
output "y" of "T".

The specified time constant is converted into a reference state-space model stored in the
ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

-
D
-
9]

<
V)]

I

Continuous-time transfer function.

As expected, refsys is a first-order model.

Examine the requirement. The viewSpec command displays the target response, which
is the step response of the reference model.

viewSpec(Req);
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Amplitude

Requirement 1: Target response to step command
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The dashed line shows the target step response specified by this requirement, a first-
order response with a time constant of five seconds.

Second-Order Step Response With Known Natural Period and Overshoot

Create a requirement that specifies a second-order step response with a natural period
of 5 seconds, and a 10% overshoot. Create the requirement for the step response from a
signal named "r" to a signal named "y".

Req = TuningGoal .StepResp("r-,"y",5,10);

When you use this requirement to tune a control system model, T, the natural period 5
1s taken to be expressed in the prevailing units of the control system. For example, if T
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is a genss model and the property T.TimeUnit is "seconds”, then this requirement
specifies a target natural period of 5 seconds for the response from the input "r" to the
output "y" of "T".

The specified parameters of the response is converted into a reference state-space model
stored in the ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

refsys

s”N"2 + 0.2365 s + 0.04

Continuous-time transfer function.

As expected, refsys is a second-order model.

Examine the requirement. The viewSpec command displays the target response, which
is the step response of the reference model.

viewSpec(Req);



TuningGoal.StepTracking class

Amplitude

Requirement 1: Target response to step command
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The dashed line shows the target step response specified by this requirement, a second-
order response with 10% overshoot and a natural period of five seconds.

Requirement with Limited Model Application and Additional Loop

Openings

Create a requirement that specifies a first-order step response with time constant of 5
seconds. Set the Model's and Openings properties to further configure the requirement’s

applicability.

Req = TuningGoal .StepTracking("r","y",5);

Req.-Models = [2 3];
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Req.Openings = “OuterLoop”

When tuning a control system that has an input "r=, an output "y~, and an analysis-
point location "OuterLoop”, you can use Req as an input to looptune or systune.
Setting the Openings property specifies that the step response from "r~ to "y~ is
measured with the loop opened at "OuterLoop”. When tuning an array of control
system models, setting the Model's property restricts how the requirement is applied. In
this example, the requirement applies only to the second and third models in an array.

See Also

looptune (for slTuner) | TuningGoal .Tracking | looptune | systune |
systune (for slTuner) | viewSpec | evalSpec | TuningGoal .Overshoot

How To
. “Time-Domain Specifications”

. “PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
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TuningGoal.Tracking class

Package: TuningGoal

Tracking requirement for control system tuning

Description

Use the TuningGoal . Tracking object to specify a frequency-domain tracking
requirement between specified inputs and outputs. This requirement specifies the
maximum relative error (gain from reference input to tracking error) as a function of
frequency. Use this requirement for control system tuning with tuning commands such
as systune or looptune.

You can specify the maximum error profile directly by providing a transfer function.
Alternatively, you can specify a target DC error, peak error, and response time. These
parameters are converted to the following transfer function that describes the maximum
frequency-domain tracking error:

(PeakError )s+ @, (DCError)
s+a, )

MaxError =

Here, o, is 2/(response time). The following plot illustrates these relationships for an
example set of values.
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Construction

Req = TuningGoal.Tracking(inputname,outputname,responsetime,dcerror,
peakerror) creates a tuning requirement Req that constrains the tracking performance
from inputname to outputname in the frequency domain. This tuning requirement
specifies a maximum error profile as a function of frequency given by:

(PeakError )s+ @, (DCError)

MaxError =

s+w,

The tracking bandwidth o, = 2/responsetime. The maximum relative steady-state error is
given by dcerror, and peakerror gives the peak relative error across all frequencies.

You can specify a MIMO tracking requirement by specifying signal names or a cell
array of multiple signal names for inputname or outputname. For MIMO tracking
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requirements, use the InputScal ing property to help limit cross-coupling. See
“Properties” on page 1-136.

Req = TuningGoal.Tracking(inputname,outputname,maxerror) specifies the
maximum relative error as a function of frequency. You can specify the target error
profile (maximum gain from reference signal to tracking error signal) as a smooth
transfer function. Alternatively, you can sketch a piecewise error profile using an frd
model.

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

*  Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sITuner interface. Use
getPoints to get the list of analysis points available in an sl Tuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u"®. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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out in

AnalysisPoint +

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:
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out in

AnalysisPoint +

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

responsetime

Target response time, specified as a positive scalar value. The tracking bandwidth is
given by o, = 2/responsetime.Express the target response time in the time units of the
models to be tuned. For example, when tuning a model T, if T.TimeUnitis "minutes”,
then express the target response time in minutes.

dcerror

Maximum steady-state fractional tracking error, specified as a positive scalar value. For
example, dcerror = 0.01 sets a maximum steady-state error of 1%.

If inputname or outputname are vector-valued, dcerror applies to all I/O pairs from
inputname to outputname.

Default: 0.001
peakerror

Maximum fractional tracking error across all frequencies, specified as a positive scalar
value greater than 1.

Default: 1
maxerror

Target tracking error profile as a function of frequency, specified as a SISO numeric LTI
model.

maxerror is the maximum gain from reference signal to tracking error signal. You can
specify maxerror as a smooth transfer function (tF, zpk, or ss model). Alternatively,
you can sketch a piecewise error profile using a frd model. When you do so, the software
automatically maps the error profile to a zpk model. The magnitude of the zpk model.
approximates the desired error profile. Use show(Req) to plot the magnitude of the zpk
model.
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maxerror must be a SISO LTI model. If inputname or outputname are cell arrays,
maxerror applies to all I/O pairs from inputname to outputname.

Properties

MaxError

Maximum error as a function of frequency, expressed as a SISO zpk model. This
property stores the maximum tracking error as a function of frequency (maximum gain
from reference signal to tracking error signal).

If you use the syntax Req =

TuningGoal . Tracking(inputname, outputname,maxerror), then the MaxError
property is the zpk equivalent or approximation of the LTI model you supplied as the
maxerror input argument.

If you use the syntax Req =
TuningGoal . Tracking(inputname, outputname,resptime,dcerror,peakerror),
then the MaxError is a zpk transfer function given by:

(PeakError )s+ @, (DCError)
MaxError = .
5+,

MaxError is a SISO LTI model. If inputname or outputname are cell arrays, MaxError
applies to all I/O pairs from inputname to outputname.

Use show(Req) to plot the magnitude of MaxError.
Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];
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Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the
model sample time.

InputScaling
Reference signal scaling, specified as a vector of positive real values.

For a MIMO tuning requirement, when the choice of units results in a mix of small

and large signals in different channels of the response, use this property to specify the
relative amplitude of each entry in the vector-valued step input. This information is used
to scale the off-diagonal terms in the transfer function from reference to tracking error.
This scaling ensures that cross-couplings are measured relative to the amplitude of each
reference signal.

For example, suppose that Req is a requirement that signals {"y1", "y2"} track
reference signals {"r1", "r2"}. Suppose further that you require the outputs to

track the references with less than 10% cross-coupling. If r1 and r2 have comparable
amplitudes, then it is sufficient to keep the gains from rl to y2 and r2 and y1 below
0.1. However, if rl is 100 times larger than r2, the gain from rl to y2 must be less than
0.001 to ensure that rl1 changes y2 by less than 10% of the r2 target. To ensure this
result, set the InputScal ing property as follows.

Req. InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times
greater than the second reference signal.

The default value, [] , means no scaling.
Default: []
Input

Reference signal names. String or cell array of strings specifying the names of the signals
to be tracked, populated by the inputname argument.

Output

Output signal names. String or cell array of strings specifying the names of the signals
that must track the reference signals, populated by the outputname argument.

Models

Models to which the tuning requirement applies, specified as a vector of indices.
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Use the Models property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Req.Name = "LoopReq”;

Default: []
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Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal . Tracking requirement, f(x) is given by:

F(3)= | simmrer T (55) 1)

oo

T(s,x) is the closed-loop transfer function from Input to Output. || . ||°° denotes the H,,

norm (see norm).

Examples

Tracking Requirement With Response Time and Maximum Steady-State
Tracking Error

Create a tracking requirement specifying that a signal "theta” track a signal
"theta_ref". The required response time is 2, in the time units of the control system
you are tuning. The maximum steady-state error is 0.1%.

Req = TuningGoal .Tracking("theta_ref", "theta",2,0.001);

Since peakerror is unspecified, this requirement uses the default value, 1.

Tracking Requirement With Maximum Tracking Error as a Function of
Frequency

Create a tracking requirement specifying that a signal "theta” track a signal
"theta_ref". The maximum relative error is 0.01 (1%) in the frequency range [0,1]. The
relative error increases to 1 (100%) at the frequency 100.

Use a frd model model to specify the error profile as a function of frequency.
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err
Req

frd([0.01 0.01 1],[0 1 100]);
TuningGoal .Tracking("theta_ref", "theta”,err);

The software converts err into a smooth function of frequency that approximates the
piecewise specified requirement. Display the error requirement using viewSpec.

viewSpec(Req)

Requirement 1: Tracking error as a function of frequency
a
1

u

Relative error (abs)

3 s sl L sl L sl
1072 10°"! 10° 10 10
Frequency (rad/s)

Pa

The yellow region indicates where the requirement is violated.

See Also

systune (for slTuner) | TuningGoal .Gain | looptune | systune | looptune
(for slTuner) | viewSpec | evalSpec | TuningGoal .LoopShape | slTuner
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How To

“Time-Domain Specifications”

“Tuning Control Systems with SYSTUNE”

“Tuning Control Systems in Simulink”

“PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
“Decoupling Controller for a Distillation Column”

“Digital Control of Power Stage Voltage”

“Tuning of a Two-Loop Autopilot”
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Package: TuningGoal

Transient matching requirement for control system tuning

Description

Use the TuningGoal . Transient object to constrain the transient response from
specified inputs to specified outputs. This requirement specifies that the transient
response closely match the response of a reference model. Specify the closeness of the
required match using the RelGap property of the requirement (see “Properties” on page
1-145). You can constrain the response to an impulse, step, or ramp input signal. You
can also constrain the response to an input signal given by the impulse response of an
input filter you specify.

Construction

Req = TuningGoal.Transient(inputname,outputname, refsys) requires that the
impulse response from inputname to outputname closely matches the impulse response
of the reference model refsys. Specify the closeness of the required match using the
RelGap property of the requirement (see “Properties” on page 1-145). inputname and
outputname can describe a SISO or MIMO response of your control system. For MIMO
responses, the number of inputs must equal the number of outputs.

Req = TuningGoal.Transient(inputname,outputname,refsys, inputtype)
specifies whether the input signal that generates the constrained transient response is
and impulse, step, or ramp signal.

Req = TuningGoal.Transient(inputname,outputname,refsys, inputfilter)
specifies the input signal for generating the transient response that the requirement
constrains. Specify the input signal as a SISO transfer function, inputfilter, that is the
Laplace transform of the desired time-domain input signal. The impulse response of
inputfilter is the desired input signal.
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Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an sITuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u". Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysizPoint

Lo

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

*  Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint -

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

refsys

Reference system for target transient response, specified as a dynamic system model,
such as a tF, zpk, or ss model. The desired transient response is the response of this
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model to the input signal specified by inputtype or inputfilter. The reference model must
be stable, and the series connection of the reference model with the input shaping filter
must have no feedthrough term.

inputtype

Type of input signal that generates the constrained transient response, specified as one
of the following strings:

+ "impulse”™ — Constrain the response at outputname to a unit impulse applied at
inputname.

+ "step" — Constrain the response to a unit step. Using "step” is equivalent to using
the TuningGoal . StepTracking design goal.

* "ramp" — Constrain the response to a unit ramp, u = t.
Default: " impulse”
inputfilter

Custom input signal for generating the transient response, specified as a SISO transfer
function (tF or zpk) model that represents the Laplace transform of the desired input
signal. inputfilter must be continuous, and can have no poles in the open right-half plane.

The frequency response of inputfilter gives the signal spectrum of the desired input
signal, and the impulse response of inputfilter is the time-domain input signal.

For example, to constrain the transient response to a unit-amplitude sine wave of
frequency w, set inputfilter to tF(w, [1,0,w"2]). This transfer function is the Laplace
transform of sin(wt).

The series connection of refsys with inputfilter must have no feedthrough term.

Properties

ReferenceModel

Reference system for target transient response, specified as a SISO or MIMO state-
space (SS) model. When you use the requirement to tune a control system, the transient
response from inputname to outputname is tuned to match this target response to within
the tolerance specified by the RelGap property.
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The refsys argument to TuningGoal . Transient sets the value of ReferenceModel to
ss(refsys).

InputShaping

Input signal for generating the transient response, specified as a SISO zpk model that
represents the Laplace transform of the time-domain input signal. InputShaping must
be continuous, and can have no poles in the open right-half plane. The value of this
property is populated using the inputtype or inputfilter arguments used when creating
the requirement.

For requirements created using an inputtype string, InputShaping takes the following
values:

inputtype InputShaping
“impulse-" 1

"step” 1/s

“ramp® 1/s*

For requirements created using an inputfilter transfer function, InputShaping takes
the value zpk(inputfilter).

The series connection of ReferenceModel with InputShaping must have no
feedthrough term.

Default: 1
RelGap

Maximum relative matching error, specified as a positive scalar value. This property
specifies the matching tolerance as the maximum relative gap between the target and
actual transient responses. The relative gap is defined as:

[ ()=30er (B)

P yref(tr)(t)"2 '

y(t) — yref(t) is the response mismatch, and 1 — ¥, (£) is the transient portion of y,.s

(deviation from steady-state value or trajectory). || ||2 denotes the signal energy (2-norm).
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The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to
the RMS of the reference transient

Increase the value of RelGap to loosen the matching tolerance.

Default: 0.1

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when

the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, 7(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when

the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, 7(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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Input

Input signal names, specified as a string or cell array of strings. These strings specify the
inputs for the transient responses that the tuning requirement constraint. The initial
value of the Input property is populated by the inputname argument.

Output

Output signal names, specified as a string or cell array of strings. These strings specify
the outputs where transient responses that the tuning requirement constraints are
measured. The initial value of the Output property is populated by the outputname
argument.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command.:

Req.-Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.
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If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {3}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Req.Name = "LoopReq-”;

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the Hs; norm, and therefore the value
of the tuning goal (see “Algorithms” on page 1-150), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = Itiblock.ss("C",1,2,3);
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To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.value = 0;
C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as I'tiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x),
where x 1s the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal . Transient requirement, f(x) is based upon the relative gap
between the tuned response and the target response:

[(6)=37er (8)],

sp= Yref(er) (t)||2 .

¥(@) — ¥re/) is the response mismatch, and 1 — ¥, (?) is the transient portion of y,.r
(deviation from steady-state value or trajectory). || ||2 denotes the signal energy (2-norm).

The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to
the RMS of the reference transient

Examples

Transient Response Requirement with Specified Input Type and Tolerance

Create a requirement for the transient response from a signal named "r" to a signal
named "u”. Constrain the impulse response to match the response of transfer function

refsys = 1/(s+ 1), but allow 20% relative variation between the target and tuned
responses.
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Amplitude

refsys = tf(1,[1 1]);
Reql = TuningGoal.Transient("r","u",refsys);

When you do not specify a response type, the requirement constrains the transient
response. By default, the requirement allows a relative gap of 0.1 between the target
and tuned responses. To change the relative gap to 20%, set the RelGap property of the
requirement.

Reql.RelGap = 0.2;
Examine the requirement.

viewSpec(Reql)

Requirement 1: Target transient response
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Amplitude

The dashed line shows the target impulse response specified by this requirement. You
can use this requirement to tune a control system model, T, that contains valid input and
output locations named "r* and "u”. If you do so, the command viewSpec(Reql,T)
plots the achieved impulse response from "r* to "u” for comparison to the target
response.

Create a requirement that constrains the response to a step input, instead of the impulse
response.

Reg2 = TuningGoal.Transient("r","u”,refsys, “step”);
Examine this requirement.

viewSpec(Req2)

Requirement 1: Target transient response
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Req2 is equivalent to the following step tracking requirement:

Reg3 = TuningGoal .StepTracking("r","u”,refsys);

Constrain Transient Response to Custom Input Signal

Create a requirement for the transient response from "r* to "u®. Constrain the response
to a sinusoidal input signal, rather than to an input, step, or ramp.

To specify a custom input signal, set the input filter to the Laplace transform of the
desired signal. For example, suppose you want to constrain the response to a signal of
sinwt, The Laplace transform of this signal is given by:

inputfilter = —
o | !

R

Create a requirement that constrains the response at "u” to a sinusoidal input of natural
frequency 2 rad/s at "r". The response should match that of the reference system

refays 1/(s+4 1)

refsys = tf(1,[1 1]);

w = 2;

inputfilter = tf(w,[1 0 w™2]);

Req = TuningGoal .Transient("u®, "r~,refsys, inputfilter);

Examine the requirement to see the shape of the target response.

viewSpec(Req)
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Amplitude

Requirement 1: Target transient response
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Requirement with Limited Model Application and Additional Loop
Openings

Create a requirement that constrains the impulse response. Set the Models and
Openings properties to further configure the requirement’s applicability.

refsys = tf(1,[1 1]);

Req = TuningGoal.Transient("r", u",refsys);
Req.-Models = [2 3];

Req.Openings = “OuterLoop”

When tuning a control system that has an input (or analysis point) "r®, an output
(or analysis point) "u”, and another analysis point at location "OuterLoop”, you
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can use Req as an input to looptune or systune. Setting the Openings property
specifies that the impulse response from "r® to "y" is computed with the loop opened
at "OuterLoop”. When tuning an array of control system models, setting the Models
property restricts how the requirement is applied. In this example, the requirement
applies only to the second and third models in an array.

See Also

systune (for slTuner) | TuningGoal .StepTracking |
TuningGoal .StepRejection | slTuner | looptune | systune | looptune (for
slTuner) | viewSpec | evalSpec

How To

. “Time-Domain Specifications”

. “Tuning Control Systems with SYSTUNE”
. “Tuning Control Systems in Simulink”
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Package: TuningGoal

Noise amplification constraint for control system tuning

Description

Use the TuningGoal .Variance object to specify a tuning requirement that limits the
noise amplification from specified inputs to outputs. The noise amplification is defined as
either:

* The square root of the output variance, for a unit-variance white-noise input
* The root-mean-square of the output, for a unit-variance white-noise input

* The H, norm of the transfer function from the specified inputs to outputs, which
equals the total energy of the impulse response

These definitions are different interpretations of the same quantity.
TuningGoal .Variance imposes the same limit on these quantities.

You can use the TuningGoal .Variance requirement for control system tuning with
tuning commands, such as systune or looptune. Specifying this requirement allows
you to tune the system response to white-noise inputs. For stochastic inputs with a

nonuniform spectrum (colored noise), use TuningGoal .WeightedVariance instead.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-159 of the object.

Construction

Req = TuningGoal .Variance(inputname,outputname,maxamp) creates a tuning
requirement. This tuning requirement limits the noise amplification of the transfer
function from inputname to outputname to the scalar value maxamp.

When you tune a control system in discrete time, this requirement assumes that the
physical plant and noise process are continuous. To ensure that continuous-time and
discrete-time tuning give consistent results, maxamp is interpreted as a constraint on
the continuous-time Hj; norm. If the plant and noise processes are truly discrete and you
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want to constrain the discrete-time H; norm instead, multiply maxamp by /T, . T is the

sample time of the model you are tuning.

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

* Any model input.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u"®. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint

e
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For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint

e

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.
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maxamp

Maximum noise amplification from inputname to outputname, specified as a positive
scalar value. This value specifies the maximum value of the output variance at the
signals specified in outputname, for unit-variance white noise signal at inputname. This
value corresponds to the maximum Hs norm from inputname to outputname.

When you tune a control system in discrete time, this requirement assumes that the
physical plant and noise process are continuous, and interprets maxamp as a bound

on the continuous-time Hy; norm. This ensures that continuous-time and discrete-time
tuning give consistent results. If the plant and noise processes are truly discrete, and you

want to bound the discrete-time H; norm instead, specify the value maxamp/ /T, . T} is

the sample time of the model you are tuning.

Properties

MaxAmplification

Maximum noise amplification, specified as a positive scalar value. This property specifies
the maximum value of the output variance at the signals specified in Output, for unit-
variance white noise signal at Input. This value corresponds to the maximum Hs; norm
from Input to Output. The initial value of MaxAmplification is set by the maxamp
input argument when you construct the requirement.

InputScaling
Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

input signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, 7(s)D;. The diagonal matrices D, and D;
have the OutputScal ing and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []
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OutputScaling
Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued

output signals when the choice of units results in a mix of small and large signals. This
information is used to scale the closed-loop transfer function from Input to Output when
the tuning requirement is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The requirement
is evaluated for the scaled transfer function D, '7(s)D;. The diagonal matrices D, and D;
have the OutputScaling and InputScal ing values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.-Models = 2:4;
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When Models = NaN, the tuning requirement applies to all models.
Default: NaN
Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the slTuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Req.Name = "LoopReq-”;

Default: [1]

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the Hs norm, and therefore the value
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of the tuning goal (see “Algorithms” on page 1-162), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = Itiblock.ss("C",1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.value = 0;
C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as Itiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value f(x).
The vector x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .Variance requirement, f(x) is given by:

1
f(x)= —
MaxAmplification

T (s,x)

2
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T(s,x) is the closed-loop transfer function from Input to Output. || ||2 denotes the H,

norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

1
MaxAmplification\/Ts

f(x):‘ T (z,x)

2

T, 1s the sample time of the discrete-time transfer function 7(z,x).

Examples

Constrain Noise Amplification Evaluated with a Loop Opening

Create a requirement that constrains the amplification of the variance from the analysis
point AP2 to the output y of the following control system, measured with the outer loop
open.
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Create a model of the system. To do so, specify and connect the numeric plant models
G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the
AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and
tuning.

G1 = tf(10,[1 10]);

G2 = tf([1 2],.[1 0.2 10]);
Cl1 = Itiblock.pid(°C","piT);
C2 = Itiblock.gain("G",1);

AP1 = AnalysisPoint("AP1");
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AnalysisPoint("AP2%);

AP2 =
T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the noise amplification from the implicit
input associated with the analysis point, AP2, to the output y.

Req = TuningGoal .Variance("AP2","y",0.1);

This constraint limits the amplification to a factor of 0.1.

Specify that the transfer function from AP2 to y is evaluated with the outer loop open
when tuning to this constraint.

Req.Openings = {"AP1"};

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then validate the tuned control system against the requirement using
viewSpec(Req, T, Info).

See Also

looptune (for slTuner) | TuningGoal .WeightedVariance | looptune |
systune | systune (for slTuner) | slTuner | viewSpec | evalSpec | norm

How To
. “Frequency-Domain Specifications”
. “Active Vibration Control in Three-Story Building”

. “Fault-Tolerant Control of a Passenger Jet”
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TuningGoal. WeightedGain class

Package: TuningGoal

Frequency-weighted gain constraint for control system tuning

Description

Use the TuningGoal .WelghtedGain object to specify a tuning requirement that limits
the weighted gain from specified inputs to outputs. The weighted gain is the maximum
across frequency of the gain from input to output, multiplied by weighting functions
that you specify. You can use the TuningGoal .WeightedGain requirement for control
system tuning with tuning commands such as systune or looptune.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-168 of the object.

Construction

Req = TuningGoal .WeightedGain(inputname,outputname,WL,WR) creates a
tuning requirement. This tuning requirement specifies that the closed-loop transfer

function, H(s), from the specified input to output meets the requirement:
[ WLS)H($)WR(s) | | < 1.

The notation | | * | |, denotes the maximum gain across frequency (the H, norm).

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

*  Any model input.
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* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u"®. Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint -

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an sITuner interface associated with the Simulink
model. Use addPoint to add analysis points to the slTuner interface. Use



TuningGoal.WeightedGain class

getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a

location named AP_y, then inputname can include "AP_y*~. Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint "

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

WL, WR

Frequency-weighting functions, specified as scalars or as SISO or MIMO numeric LTI
models.

The functions WL and WR provide the weights for the tuning requirement. The tuning
requirement ensures that the gain H(s) from the specified input to output satisfies the
inequality:

| | WL(s)H(s)WR(s) | |, <1.

WL provides the weighting for the output channels of H(s), and WR provides the weighting
for the input channels. You can specify scalar weights or frequency-dependent weighting.
To specify a frequency-dependent weighting, use a numeric LTI model. For example:

WL
WR

tf(1,[1 0.01]D);
10;
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If you specify MIMO weighting functions, then inputname and outputname must be
vector signals. The dimensions of the vector signals must be such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For example, if you specify WR
= diag([1 10]), then inputname must include two signals. Scalar values, however,
automatically expand to any input or output dimension.

A value of WL = [] or WR = [] is interpreted as the identity.

Properties
WL

Frequency-weighting function for the output channels of the transfer function H(s) to
constrain, specified as a scalar, or as a SISO or MIMO numeric LTI model. The initial
value of the WL property is set by the WL input argument when you construct the
requirement object.

WR

Frequency-weighting function for the input channels of the transfer function to constrain,
specified as a scalar or as a SISO or MIMO numeric LTI model. The initial value of the
WR property is set by the WR input argument when you construct the requirement object.

Focus

Frequency band in which tuning requirement is enforced, specified as a row vector of the
form [min,max].

Set the Focus property to limit enforcement of the requirement to a particular frequency
band. Express this value in the frequency units of the control system model you are
tuning (rad/TimeUnit). For example, suppose Req is a requirement that you want to
apply only between 1 and 100 rad/s. To restrict the requirement to this band, use the
following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the
model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or O (False).
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By default, TuningGoal .Gain imposes a stability requirement on the closed-

loop transfer function from the specified inputs to outputs, in addition to the gain
requirement. If stability is not required or cannot be achieved, set Stabilize to false
to remove the stability requirement. For example, if the gain constraint applies to an
unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)
Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
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the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}

Name

Name of the requirement object, specified as a string.

For example, if Req is a requirement:

Req.Name = "LoopReq";

Default: []

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value
f(x). x 1s the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .WeightedGain requirement, f(x) is given by:

f(x)=[WLT (s,x)Wg ||oo
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T(s,x) is the closed-loop transfer function from Input to Output. || ||oo denotes the H,

norm (see norm).

Examples

Constrain Weighted Gain of Closed-Loop System

Create a tuning goal requirement that constrains the gain of a closed-loop SISO system
from its input, r, to its output, y. Weight the gain at its input by a factor of 10 and at its
output by the frequency-dependent weight 1/(# + .01}

WL = €F(1,[1 0.01]);

WR 10;
Req = TuningGoal .WeightedGain("r=,"y",WL,WR);

You can use the requirement Req with systune to tune the free parameters of any
control system model that has an input signal named "r* and an output signal named

y".

You can then use viewSpec to validate the tuned control system against the
requirement,

Constrain Weighted Gain Evaluated with a Loop Opening

Create a requirement that constrains the gain of the outer loop of the following control
system, evaluated with the inner loop open.

+ +
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Create a model of the system. To do so, specify and connect the numeric plant models, G1
and G2, the tunable controllers C1 and C2. Also, create and connect the AnalysisPoint
blocks that mark points of interest for analysis or tuning, AP1 and AP2.
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Gl = tf(10,[1 10D);

G2 = tf([1 2],.[1 0.2 10]);
Cl1 = Itiblock.pid(°C","piT);
C2 = Itiblock.gain("G",1);

AP1 = AnalysisPoint("AP1");

AP2 = AnalysisPoint("AP2%);

T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);
T.InputName = "r~;

T.OutputName = "y-°;

Create a tuning requirement that constrains the gain of this system from r to y. Weight
the gain at the output by #/ (% + 0.5},

WL = tf([1 0],[1 0.51);
Req = TuningGoal .WeightedGain("r","y" ,WL,[D);

This requirement is equivalent to Req = TuningGoal .Gain("r=,"y",1/WL).
However, for MIMO systems, you can use TuningGoal .WeightedGain to create
channel-specific weightings that cannot be expressed as TuningGoal .Gain
requirements.

Specify that the transfer function from r to y be evaluated with the outer loop open for
the purpose of tuning to this constraint.

Req.Openings = "AP1°7;

By default, tuning using TuningGoal .WeightedGain imposes a stability requirement
as well as the gain requirement. Practically, in some control systems it is not possible to
achieve a stable inner loop. When this occurs, remove the stability requirement for the
inner loop by setting the Stabilize property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control
system, but not on the inner loop alone.

Use systune to tune the free parameters of T to meet the tuning requirement specified
by Req. You can then validate the tuned control system against the requirement using
the command viewSpec(Req, T, Info)

See Also

looptune (for slTuner) | looptune | systune | systune (for slTuner) |
slTuner | viewSpec | evalSpec
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How To

. “Frequency-Domain Specifications”
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TuningGoal. WeightedVariance class

Package: TuningGoal

Frequency-weighted Hy norm constraint for control system tuning

Description

Use the TuningGoal .WeightedVariance object to specify a tuning requirement that
limits the weighted Hy norm of the transfer function from specified inputs to outputs. The
H; norm measures:

* The total energy of the impulse response, for deterministic inputs to the transfer
function.

* The square root of the output variance for a unit-variance white-noise input, for
stochastic inputs to the transfer function. Equivalently, the H; norm measures the
root-mean-square of the output for such input.

You can use the TuningGoal .WeightedVariance requirement for control system
tuning with tuning commands, such as systune or looptune. By specifying

this requirement, you can tune the system response to stochastic inputs with

a nonuniform spectrum such as colored noise or wind gusts. You can also use
TuningGoal .WeightedVariance to specify LQG-like performance objectives.

After you create a requirement object, you can further configure the tuning requirement
by setting “Properties” on page 1-177 of the object.

Construction

Req = TuningGoal .Variance(inputname,outputname,WL,WR) creates a tuning
requirement Req. This tuning requirement specifies that the closed-loop transfer function
H(s) from the specified input to output meets the requirement:

| I Wi(s)H(s)Wg(s) | |2 < 1.

The notation | | * | | 3 denotes the Hy norm.

When you are tuning a discrete-time system, Req imposes the following constraint:
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%”WL (2)T (2,%)Wg (2)], <1.

The H; norm is scaled by the square root of the sample time T to ensure consistent
results with tuning in continuous time. To constrain the true discrete-time Hs norm,

multiply either W, or Wx by \/i .

Input Arguments
inputname

Input signals for the requirement, specified as a string or as a cell array of strings, for
multiple-input requirements.

If you are using the requirement to tune a Simulink model of a control system, then
inputname can include:

*  Any model input.

* Any linear analysis point marked in the model.

+ Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then inputname can include:

* Any input of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T. InputName. Also, if T contains an AnalysisPoint block with a

location named AP_u, then inputname can include "AP_u". Use getPoints to get a list
of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for
the requirement is the implied input associated with the AnalysisPoint block:
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out in

AnalysisPoint +

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

outputname

Output signals for the requirement, specified as a string or as a cell array of strings, for
multiple-output requirements.

If you are using the requirement to tune a Simulink model of a control system, then
outputname can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink
model. Use addPoint to add analysis points to the sl Tuner interface. Use
getPoints to get the list of analysis points available in an slTuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then outputname can include:

* Any output of the genss model

*  Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be a
string contained in T.OutputName. Also, if T contains an AnalysisPoint block with a
location named AP_y, then inputname can include "AP_y". Use getPoints to get a list
of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal
for the requirement is the implied output associated with the AnalysisPoint block:
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out in

+

AnalysisPoint +

For more information about analysis points in control system models, see “Marking
Signals of Interest for Control System Analysis and Design”.

WL ,WR

Frequency-weighting functions, specified as scalars or as SISO or MIMO numeric LTI
models.

The functions WL and WR provide the weights for the tuning requirement. The tuning
requirement ensures that the gain H(s) from the specified input to output satisfies the
inequality:

[ 1 Wi(s)H(s)Wg(s) | |2 < 1.

WL provides the weighting for the output channels of H(s), and WR provides the weighting
for the input channels. You can specify scalar weights or frequency-dependent weighting.
To specify a frequency-dependent weighting, use a numeric LTI model. For example:

tf(1,[1 0.01]D);
10;

WL
WR

If you specify MIMO weighting functions, then inputname and outputname must be
vector signals. The dimensions of the vector signals must be such that the dimensions of
H(s) are commensurate with the dimensions of WL and WR. For example, if you specify WR
= diag([1 10]), then inputname must include two signals. Scalar values, however,
automatically expand to any input or output dimension.

When you are tuning a discrete-time system, WL and WR must be either scalars or
discrete-time models having the same sample time (TS) as the model you are tuning.

Avalue of WL = [] or WR = [] is interpreted as the identity.

Properties
WL

Frequency-weighting function for the output channels of the transfer function H(s) to
constrain, specified as a scalar, or as a SISO or MIMO numeric LTI model. The initial
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value of the WL property is set by the WL input argument when you construct the
requirement object.

WR

Frequency-weighting function for the input channels of the transfer function to constrain,
specified as a scalar or as a SISO or MIMO numeric LTI model. The initial value of the
WR property is set by the WR input argument when you construct the requirement object.

Input

Input signal names, specified as a cell array of strings. These strings specify the names
of the inputs of the transfer function that the tuning requirement constrains. The initial
value of the Input property is set by the inputname input argument when you construct
the requirement object.

Output

Output signal names, specified as a cell array of strings. These strings specify the names
of the outputs of the transfer function that the tuning requirement constrains. The
initial value of the Output property is set by the outputname input argument when you
construct the requirement object.

Models
Models to which the tuning requirement applies, specified as a vector of indices.

Use the Model's property when tuning an array of control system models with systune,
to enforce a tuning requirement for a subset of models in the array. For example, suppose
you want to apply the tuning requirement, Req, to the second, third, and fourth models
in a model array passed to systune. To restrict enforcement of the requirement, use the
following command:

Req.Models = 2:4;

When Models = NaN, the tuning requirement applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the requirement, specified as a cell array of
strings that identify loop-opening locations. The tuning requirement is evaluated against
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the open-loop configuration created by opening feedback loops at the locations you
identify.

If you are using the requirement to tune a Simulink model of a control system, then
Openings can include any linear analysis point marked in the model, or any linear
analysis point in an sITuner interface associated with the Simulink model. Use
addPoint to add analysis points and loop openings to the sITuner interface. Use
getPoints to get the list of analysis points available in an sITuner interface to your
model.

If you are using the requirement to tune a generalized state-space (genss) model of a
control system, then Openings can include any AnalysisPoint location in the control
system model. Use getPoints to get the list of analysis points available in the genss
model.

Default: {}
Name
Name of the requirement object, specified as a string.

For example, if Req is a requirement:
Reg.Name = "LoopReq”;

Default: []

Tips

When you use this requirement to tune a continuous-time control system, systune
attempts to enforce zero feedthrough (D = 0) on the transfer that the requirement
constrains. Zero feedthrough is imposed because the H; norm, and therefore the value
of the tuning goal (see “Algorithms” on page 1-180), is infinite for continuous-time
systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that
contribute to the feedthrough term. systune returns an error when fixing these tunable
parameters is insufficient to enforce zero feedthrough. In such cases, you must modify
the requirement or the control structure, or manually fix some tunable parameters of
your system to values that eliminate the feedthrough term.
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When the constrained transfer function has several tunable blocks in series, the
software’s approach of zeroing all parameters that contribute to the overall feedthrough
might be conservative. In that case, it is sufficient to zero the feedthrough term of one
of the blocks. If you want to control which block has feedthrough fixed to zero, you can
manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free
properties of the block parametrization. For example, consider a tuned state-space block:

C = Itiblock.ss("C",1,2,3);

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the
parameter.

C.d.value = 0;
C.d.Free = false;

For more information on fixing parameter values, see the Control Design Block reference
pages, such as Itiblock.ss.

Algorithms

When you tune a control system using a TuningGoal object to specify a tuning
requirement, the software converts the requirement into a normalized scalar value
f(x). x is the vector of free (tunable) parameters in the control system. The software
then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
requirement is a hard constraint.

For the TuningGoal .WeightedVariance requirement, f(x) is given by:

f(x) =[WLT (s,2) W],

T(s,x) 1s the closed-loop transfer function from Input to Output. || ||2 denotes the Hy

norm (see norm).

For tuning discrete-time control systems, f(x) is given by:

F() =ﬁ||WL(z)T<z,x>WR (2)],-
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T, is the sample time of the discrete-time transfer function 7(z,x).

Examples

Weighted Constraint on H2 Norm

Create a constraint for a transfer function with one input, r, and two outputs, € and y,
that limits the 12 norm as follows:

1

S 3 e T.'-I .
s+0.001°" || _ g
e I'
0.001s+1"™ lls
T.¢ is the closed-loop transfer function from r to e, and Ty is the closed-loop transfer

function from r to y.

s = tf("s™);
WL = blkdiag(1/(s+0.001),s/(0.001*s+1));
Req = TuningGoal .WeightedVariance("r*,{"e", "y "},WL,[1);

See Also

systune (for slTuner) | TuningGoal .Gain | TuningGoal .Variance | systune
| Tooptune | looptune (for slTuner) | TuningGoal .LoopShape | slTuner |
norm

How To
. “Frequency-Domain Specifications”
. “Fault-Tolerant Control of a Passenger Jet”
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actual2normalized

Transform actual values to normalized values

Syntax

NV = actual2normalized(uElement,AV)
[NV,ndist] = actual2normalized(uElement,AV)

Description

NV = actual2normalized(uElement,AV) transforms the values AV of the uncertain
element uElement into normalized values NV. If AV is the nominal value of uElement,
NV is 0. Otherwise, AV values inside the uncertainty range of uElement map to the

unit ball | INV]] <= 1, and values outside the uncertainty range map to | [INV]] >

1. The argument AV can contain a single value or an array of values. NV has the same
dimensions as AV.

[NV,ndist] = actualZ2normalized(uElement,AV) also returns the normalized
distance ndist between the values AV and the nominal value of uElement. This distance
is the norm of NV. Therefore, ndist <= 1 for values inside the uncertainty range of
uElement, and ndist > 1 for values outside the range. If AV is an array of values, then
ndist is an array of normalized distances.

The robustness margins computed in robuststab and robustperf serve as bounds for
the normalized distances in ndist. For example, if an uncertain system has a stability
margin of 1.4, this system is stable for all uncertain element values whose normalized
distance from the nominal is less than 1.4.

Examples

Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their nominal value, the
normalized distance is intuitive, scaling linearly with the numerical difference from the
uncertain real parameter's nominal value.
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Create uncertain real parameters with a range that is symmetric about the nominal
value, where each end point is 1 unit from the nominal. Points that lie inside the range
are less than 1 unit from the nominal, while points that lie outside the range are greater

than 1 unit from the nominal.

a = ureal("a",3,"range",[1 5]):
NV = actual2normalized(a,[1 3 5])

NV =

-1.0000 0 1.0000
NV = actual2normalized(a,[2 4])
NV =

-0.5000 0.5000
NV = actual2normalized(a,[0 6])
NV =

-1.5000 1.5000

Plot the normalized values and normalized distance for several values.

values = linspace(-3,9,250);
[nv,ndist] = actual2normalized(a,values);
plot(values,nv, "r." ,values,ndist, "b-")
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Uncertain Real Parameter with Nonsymmetric Range

Create a nonsymmetric parameter. The end points are 1 normalized unit from nominal,
and the nominal is 0 normalized units from nominal. Moreover, points inside the range
are less than 1 unit from nominal, and points outside the range are greater than 1 unit
from nominal. However, the relationship between the normalized distance and numerical
difference is nonlinear.

au = ureal("ua“,4,"range",[1 5]);
NV = actual2normalized(au,[1 4 5])
NV =



actual2normalized

NV = actual2normalized(au,[2 4.5])
NV =

-0.8000 0.4000
NV = actual2normalized(au,[0 6])
NV =

-1.1429 4._.0000

Graph the relationship between actual and normalized values. The relationship is very
nonlinear.

AV
NV

linspace(-5,6,250);
actual2normalized(au,AV);

plot(NV,AV,0,au.Nominalvalue, "ro",-1,au.Range(1),"bo",1,au.Range(2),"bo")
grid, xlabel("Normalized Values®), ylabel("Actual Values™)
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Actual Values
[
T

Mormalized Values

The red circle shows the nominal value (normalized value = 0). The blue circles show the
values at the edges of the uncertainty range (normalized values = -1, 1).

More About

Algorithms
For details on the normalize distance, see “Normalizing Functions for Uncertain

Elements” in the Robust Control Toolbox™ User's Guide.
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See Also

normalized2actual | robuststab | robustperf
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2-8

aff2pol

Convert affine parameter-dependent models to polytopic models

Syntax

polsys = aff2pol(affsys)

Description

aff2pol derives a polytopic representation polsys of the affine parameter-dependent
system

E(p)x = A(p)x + B(p)u

y=C(p)x +D(p)u

where p = (p1, . . ., pn) 1s a vector of uncertain or time-varying real parameters taking
values in a box or a polytope. The description afFfsys of this system should be specified
with psys.

The vertex systems of polsys are the instances of Equation 2-1 and Equation 2-2 at the
vertices pe, of the parameter range, i.e., the SYSTEM matrices

TA(p,y) + jB(p,,) B(py)C
H  Clp,) D(p,,)E

for all corners pey of the parameter box or all vertices pey of the polytope of parameter
values.

See Also

psys | pvec | uss
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augw

State-space or transfer function plant augmentation for use in weighted mixed-
sensitivity H,, and H, loopshaping design

Syntax

P = AUGW(G,W1,W2,W3)

Description

P = AUGW(G,W1,W2,W3) computes a state-space model of an augmented LTI plant
P(s) with weighting functions Wi(s), Wa(s), and Wjs(s) penalizing the error signal, control
signal and output signal respectively (see block diagram) so that the closed-loop transfer
function matrix is the weighted mixed sensitivity

WSO
A O
BVsTH

where S, R and T are given by

S=(+GK)!
R=K(I+GK)!
T=GK(I+GK)!

The LTI systems S and T are called the sensitivity and complementary sensitivity,
respectively.
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AUGKENTED FLANT Rs)

'ﬁ'.'l
Wa 1
+
= u ¥ ,
u ?_ G W
Us
oL
C ¥
COWTROLLER
1
Kis)
— |

Plant Augmentation

For dimensional compatibility, each of the three weights Wy, Wy and W5 must be either
empty, a scalar (SISO) or have respective input dimensions Ny, IV, and [Ny where G is
Ny-by-N,. If one of the weights is not needed, you may simply assign an empty matrix
[1;e.g,P = AUGW(G,W1,[],W3) is P(s) as in the “Algorithms” on page 2-12 section
below, but without the second row (without the row containing W2).

Examples

Create Augmented Plant for H-Infinity Synthesis

s = zpk("s");

G = (s-1)/(s+1);

W1l = 0.1*(s+100)/(100*s+1);
w2 = 0.1;

w3 = [1;

P = augw(G,W1,W2,W3);

[K,CL,GAM] = hinfsyn(P);
[K2,CL2,GAM2] = h2syn(P);

2-10
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Singular Values (dB)

L = G*K;
S = inv(1+L);
T = 1-S;

sigma(S, "k",GAM/W1, "k-_",T,"r" ,GAM*G/W2,"r-_")
legend("S = 1/(1+L) ", "GAM/W1*","T=L/(1+L) ", "GAM*G/W2",2)

Singular Values

50 : , |
) S = (1L} | |
b [ C et GAM/ WA
< T=Li{1+L)
J0r P * |
S| T GAM*GIW2

-50 ! i |
10 “ 10 < 10" ”_':C ”-.:L
Frequency (rad/s)

Limitations

The transfer functions G, W;, Wy and W3 must be proper, i.e., bounded as s » » or, in
the discrete-time case, as z - . Additionally, W;, Wy and W; should be stable. The plant
G should be stabilizable and detectable; else, P will not be stabilizable by any K.
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More About

Algorithms

The augmented plant P(s) produced by is

Partitioning is embedded via P=mktito(P,NY,NU), which sets the InputGroup and
OutputGroup properties of P as follows

[r.cl=size(P);
P. InputGroup
P .OutputGroup

struct("U1",1:c-NU,"U2",c-NU+1:c);
struct("Y1",1:r-NY,"Y2" ,r-NY+1:r);

See Also
h2syn | hinfsyn | mixsyn | mktito
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balancmr

Balanced model truncation via square root method

Syntax

GRED = balancmr(G)

GRED = balancmr(G,order)

[GRED, redinfo] = balancmr(G,keyl,valuel,...)
[GRED,redinfo] = balancmr(G,order,keyl,valuel,...)

Description

balancmr returns a reduced order model GRED of G and a struct array redinfo
containing the error bound of the reduced model and Hankel singular values of the
original system.

The error bound is computed based on Hankel singular values of G. For a stable system
these values indicate the respective state energy of the system. Hence, reduced order can
be directly determined by examining the system Hankel singular values, oi.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error || G-
GRED || « for well-conditioned model reduced problems [1]:

n
IG - Gred|l,, < 2}; o;
+

This table describes input arguments for balancmr.

Argument Description

G LTI model to be reduced. Without any other inputs, balancmr
will plot the Hankel singular values of G and prompt for
reduced order
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2-14

Argument

Description

ORDER

(Optional) Integer for the desired order of the reduced model,
or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = X:y, or a vector of positive integers. By default, all the anti-stable part of
a system is kept, because from control stability point of view, getting rid of unstable
state(s) is dangerous to model a system.

"MaxError' can be specified in the same fashion as an alternative for "Order". In this
case, reduced order will be determined when the sum of the tails of the Hankel singular
values reaches the 'MaxError'.

This table lists the input arguments "key" and its "value®.

Argument Valve Description
'MaxError' Real number or vector |Reduce to achieve H, error. When
of different errors present, "MaxError " overides ORDER
input.
'Weights' {Wout,Win} cell array |Optimal 1-by-2 cell array of LTI
weights Wout (output) and Win
(input). Defaults are both identity.
Weights must be invertible.
'Display' “on- or "off" Display Hankel singular plots (default
"off").
'Order' Integer, vector or cell |Order of reduced model. Use only if
array not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument

Description

GRED

LTI reduced order model. Becomes multidimensional array when input
is a serial of different model order array
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Argument Description
REDINFO A STRUCT array with three fields:

+ REDINFO.ErrorBound (bound on || G-GRED ||x)
+ REDINFO.StabSV (Hankel SV of stable part of G)
* REDINFO.UnstabSV (Hankel SV of unstable part of G)

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234, "twister”);
G = rss(30,5,4);
[gl, redinfol] = balancmr(G); % display Hankel SV plot

% and prompt for order (try 15:20)
balancmr(G,20);
balancmr(G,[10:2:18]);
balancmr (G, "MaxError*®,[0.01, 0.05]);

[g2, redinfo2]
[g3, redinfo3]
[g4, redinfo4]
for i = 1:4

Ffigure(i); eval(["sigmna(G,g" num2str(i) ");:"D:
end

More About

Algorithms

Given a state space (A,B,C,D) of a system and &, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system

to the k" order reduced model.

1  Find the SVD of the controllability and observability grammians
P=U,3%,V,~
Q=Uz, VqT

2 Find the square root of the grammians (left/right eigenvectors)
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L,=U, Zp’/z
L,=U, 2"
3 Find the SVD of (L,"L,)
L"L,=UzV"
4 Then the left and right transformation for the final 2" order reduced model is
Si.aic = Lo UG,1:k) B(1;k,1:k)) "
Srpic =L, V(:,1:k) (1;k,1:k)) "
5 Finally,

~ A T T
A BE_ %SL,BIGASR,BIG | SL,BIGB%

Bé‘ ﬁE_H CSg,BIG ‘ D E

The proof of the square root balance truncation algorithm can be found in [2].

References

[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear Multivariable
Systems, and Their Lu-error Bounds,“ Int. J. Control, Vol. 39, No. 6, 1984, p.
1145-1193

[2] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989, p.729-733

See Also

reduce | schurmr | bstmr | ncfmr | hankelmr | hankelsv

2-16



bilin

bilin

Multivariable bilinear transform of frequency (s or z)

Syntax

GT = bilin(G,VERS,METHOD,AUG)

Description
bilin computes the effect on a system of the frequency-variable substitution,

:az+5
yz+ B

S

The variable VERS denotes the transformation direction:

VERS= 1, forward transform (s—z) or (s — §).

VERS=-1, reverse transform (z—s) or (s — §).

This transformation maps lines and circles to circles and lines in the complex plane.
People often use this transformation to do sampled-data control system design [1] or, in
general, to do shifting of jo modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as backward
rectangular, etc., based on the METHOD you select

Bilinear Transform Types

Method Type of bilinear transform
"BwdRec* backward rectangular:
_z-1
S -
Tz

AUG = T, the sample time.

"FwdRec*" forward rectangular:

2-17
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Method Type of bilinear transform

_z-1

T

S

AUG = T, the sample time.

*S Tust* shifted Tustin:

[
N

[
=

S| o
B

+

—
mminln

|
>

AUG = [T h], is the “shift” coefficient.

S fgjw" shifted jw-axis, bilinear pole-shifting, continuous-time to
continuous-time:

__S*tpm
1+5/ py
AUG = [p2 pil.
"G_Bilin* METHOD = "G_Bilin", general bilinear, continuous-time to

continuous-time:

Examples

Tustin Continuous s-Plane to Discrete z-Plane Transforms

Consider the following continuous-time plant (sampled at 20 Hz):
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1 1 0
B_ DB él DC él) DD g E;T—005
DO ‘2D 10 10 0

Following is an example of four common “continuous to discrete” bi Il in transformations
for the sampled plant:

A=1[-11; 0-2];

B=1[10; 11];

C=1[10; 0 1];

D = [0 0; 0 0];

sys = ss(A,B,C,D); % ANALOG

Ts = 0.05; % sample time

syst = c2d(sys,Ts, "tustin®); % Tustin

sysp = c2d(sys,Ts, "prewarp”,40); % Pre-warped Tustin
sysb = bilin(sys,1, "BwdRec”,Ts); % Backward Rectangular
sysf = bilin(sys,1, "FwdRec",Ts); % Forward Rectangular

Plot the response of the continuous-time plant and the transformed discrete-time plants.
w = logspace(-2,3,50); % frequencies to plot

sigma(sys,syst,sysp,sysb,sysf,w);
legend("sys", "syst”,"sysp”, "sysb”, "sysf", "Location”, "SouthWest")
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Singular Values (dB)

Singular Values
10 T T T T TIOTg LI LR RN | T T T T T T T T T
I:I__
10 F
20F
30F
40T
i sya
50 syst
sysp
B0 T sysh
sysf
'?I:I' . i i iiaiil i i idiiiiil i i i gl i i --....In
1072 107" 10° 10’ 10° 10°

Frequency (rad/s)

Bilinear continuous to continuous pole-shifting

Design an H mixed-sensitivity controller for the ACC Benchmark plant

1

G)=—F—F—
° 32(32 +2)

such that all closed-loop poles lie inside a circle in the left half of the s-plane whose
diameter lies on between points [p1,p2]=[-12,-2]:

pl=-12; p2=-2; s=zpk("s");
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G=ss(1/(s"2*(s"2+2)));

Kt=mixsyn(Gt,1,[].1);

K =bilin(Kt,-1,"*Sft_jw",[pl p2]); % Final controller K

% original unshifted plant
Gt=bilin(G, 1, "STt_jw",[pl p2]); % bilinear pole shifted plant Gt
% bilinear pole shifted controller

As shown in the following figure, closed-loop poles are placed in the left circle [pl p2].
The shifted plant, which has its non-stable poles shifted to the inside the right circle, is

G;(s) =4.765x107°

(s-12)*
(s-2)%(s% —4.2745 +5.918)

Example of Bilinear Mapping: s~ =(-s + p1) / (s/p2 -1)

iok....... O original plant poles (s—plane)
: + shifted plant poles (s "—plane)
] S & # shifted H-Inf closed—loop poles| |
G =  final H-Inf closed-loop poles
al- ‘,*'_-"'\.,*'--“‘\,
P S N : PR N
R A o
Of ~p# -t w-plen +oplotelpd
Vi s i twma ¥ o LT
—2"' "\"':'"'"'""'.""'J'"""."""L"'"':"""""".""""""
b ’ L I ¢
_4"' III‘E‘I;F‘__.?‘ ---h-‘%-.--_"f\- -----------
—6F ................................... e e e
_ghoon e D D
-10f
-15 -10 -5 0 5 10 15

(p1 = -2, p2 =-12)

*S_ftjw" final closed-loop poles are inside the left [p1,p2] circle
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More About

Algorithms
bilin employs the state-space formulae in [3]:

@Ay | ByO_ %BA—éI)(aI+yA)‘1 | (aB -yd)(al - yA)_lBB

O
b Dg B Cal-ya)? | D+yClal-yA)'B L

References

[1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System, Addison-Wesley,
1980.

[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, “H,, Control Synthesis for a Large
Space Structure,” AIAA J. Guidance, Control and Dynamics, 14, 3, p. 513-520,
May/June 1991.

[3] Safonov, M.G., “Imaginary-Axis Zeros in Multivariable H,, Optimal Control”, in R.F.
Curtain (editor), Modelling, Robustness and Sensitivity Reduction in Control
Systems, p. 71-81, Springer-Varlet, Berlin, 1987.

[4] Chiang, R.Y., and M.G. Safonov, “H,, Synthesis using a Bilinear Pole Shifting
Transform,” AIAA, J. Guidance, Control and Dynamics, vol. 15, no. 5, p.
1111-1117, September-October 1992.

See Also
c2d | d2c | sectf
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bstmr

Balanced stochastic model truncation (BST) via Schur method

Syntax

GRED = bstmr(G)

GRED

bstmr(G,order)

[GRED, redinfo] = bstmr(G,keyl,valuel,...)

[GRED, redinfo] = bstmr(G,order,keyl,valuel,...)

Description

bstmr returns a reduced order model GRED of G and a struct array redinfo containing
the error bound of the reduced model and Hankel singular values of the phase matrix of
the original system [2].

The error bound is computed based on Hankel singular values of the phase matrix of
G. For a stable system these values indicate the respective state energy of the system.

Hence, reduced order can be directly determined by examining these values.

With only one input argument G, the function will show a Hankel singular value plot of
the phase matrix of G and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the multiplicative ||

GRED-1(G-GRED) || « or relative error || G—=1(G-GRED) || « for well-conditioned model
reduction problems [1]:

la™4(G - Gred)|,, Sﬁ(l +20;(1 +0? +a,.))—1

+

This table describes input arguments for bstmr.
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Argument Description

G LTI model to be reduced (without any other inputs will plot its
Hankel singular values and prompt for reduced order)

ORDER (Optional) an integer for the desired order of the reduced model,
or a vector of desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = X:y, or a vector of integers. By default, all the anti-stable part of a system
is kept, because from control stability point of view, getting rid of unstable state(s) is

dangerous to model a system.

"MaxError' can be specified in the same fashion as an alternative for "ORDER". In this
case, reduced order will be determined when the accumulated product of Hankel singular
values shown in the above equation reaches the 'MaxError'.

Argument Valve Description

'MaxError' Real number or vector |Reduce to achieve H, error.
of different errors
When present, "MaxError "overides
ORDER input.

'Display' "on” or "off" Display Hankel singular plots (default
"off").
'Order' Integer, vector or cell |Order of reduced model. Use only if not
array specified as 2nd argument.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimension array when
input is a serial of different model order array.

REDINFO A STRUCT array with three fields:

* REDINFO.ErrorBound (bound on |G (G-GRED) ||«)
+ REDINFO.StabSV (Hankel SV of stable part of G)
+ REDINFO.UnstabSV (Hankel SV of unstable part of G)
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G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234, "twister”);
G = rss(30,5,4); G.d = zeros(5,4);
[gl, redinfol] = bstmr(G); % display Hankel SV plot
% and prompt for order (try 15:20)
bstmr(G,20);
bstmr(G,[10:2:18]);
bstmr (G, "MaxError*®,[0.01, 0.05]);

[g2, redinfo2]
[g3, redinfo3]
[g4, redinfo4]
for i = 1:4

Ffigure(i); eval(["sigmna(G,g" num2str(i) "):"D:
end

More About

Algorithms

Given a state space (A,B,C,D) of a system and k&, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system

to the k" order reduced model.

1  Find the controllability grammian P and observability grammian @ of the left
spectral factor ® = I'(0)I'*(—0) = Q*(—0)Q(0) by solving the following Lyapunov and
Riccati equations
AP+PA" +BB"=0
Bw=PC" +BD"

QA +A" Q +(@Bw- C") (-DD") (@Bw-C")"' =0

2 Find the Schur decomposition for PQ in both ascending and descending order,

respectively,
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o :
VAPQV, =0 0
H 0 AH
O
0O

A,
VA PQV), = 0 =
H o AH

3 Find the left/right orthonormal eigen-bases of PQ associated with the % big Hankel
singular values of the all-pass phase matrix (W (s)) " G(s).

k

r—L
Va =lVg smarr Vi,Big]
—

Vb =1VrBIG » VL sMALL]

4 Find the SVD of (VTL,B]GVR,ng) =UZX QT

S Form the left/right transformation for the final £ order reduced model
St.pic = Vi,pic U Z(1:k,1:R) "
Srsic = Ve VE(L:k,1:R) ™

6 Finally,

~ A T T
A BE_ %SL,BIGASR,BIG | SL,BIGB%

T |Dbg H CSeme | D F

The proof of the Schur BST algorithm can be found in [1].

Note The BST model reduction theory requires that the original model D matrix be full
rank, for otherwise the Riccati solver fails. For any problem with strictly proper model,
you can shift the jw-axis via bil'in such that BST/REM approximation can be achieved
up to a particular frequency range of interests. Alternatively, you can attach a small
but full rank D matrix to the original problem but remove the D matrix of the reduced
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order model afterwards. As long as the size of D matrix is insignificant inside the control
bandwidth, the reduced order model should be fairly close to the true model. By default,
the bstmr program will assign a full rank D matrix scaled by 0.001 of the minimum
eigenvalue of the original model, if its D matrix is not full rank to begin with. This serves
the purpose for most problems if user does not want to go through the trouble of model
pretransformation.

References

[1] Zhou, K., “Frequency-weighted model reduction with Loo error bounds,” Syst. Contr.
Lett., Vol. 21, 115-125, 1993.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust Control: A Schur

Relative Error Method,” International J. of Adaptive Control and Signal
Processing, Vol. 2, p. 259-272, 1988.

See Also

reduce | balancmr | hankelmr | schurmr | ncfmr | hankelsv
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complexify

Replace ureal atoms by summations of ureal and ucomplex (or ultidyn) atoms

Syntax
MC = complexify(M,alpha)
MC = complexify(M,alpha, "ultidyn®)

Description

The command complexify replaces ureal atoms with sums of ureal and ucomplex
atoms using usubs. Optionally, the sum can consist of a ureal and ultidyn atom.

complexify is used to improve the conditioning of robust stability calculations
(robuststab) for situations when there are predominantly ureal uncertain elements.

MC = complexify(M,alpha) results in each ureal atom in MC having the same Name
and NominalValue as the corresponding ureal atom in M. If Range is the range of one
ureal atom from M, then the range of the corresponding ureal atom in MC is

[Range (1) +alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]

The net effect is that the same real range is covered with a real and complex uncertainty.
The real parameter range is reduced by equal amounts at each end, and alpha
represents (in a relative sense) the reduction in the total range. The ucomplex atom will
add this reduction in range back into MC, but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to
alpha*diff(Range). Its name is the name of the original ureal atom, appended with
the characters " _cmpxfy".

MC = complexify(M,alpha, "ultidyn®) is the same, except that gain-bounded
ultidyn atoms are used instead of ucomplex atoms. The ultidyn atom has its Bound
equal to alpha*diff(Range).
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Examples

Complexified Uncertain Parameter

To illustrate complexification, create a uncertain real parameter, cast it to an uncertain
matrix, and apply a 10% complexification.

a = umat(ureal("a",2.25,"Range",[1-5 3]));
b = complexify(a,-1);
as = usample(a,200);
bs = usample(b,4000);

Make a scatter plot of the values that the complexified matrix (scalar) can take, as well
as the values of the original uncertain real parameter.

plot(real(bs(:)),imag(bs(:)),"-",real(as(:)),imag(as(:)),r.")
axis([1 3.5 -0.2 0.2D)
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. Getting Reliable Estimates of Robustness Margins

See Also

icomplexify | robuststab
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cmsclsyn

cmsclsyn

Approximately solve constant-matrix, upper bound p-synthesis problem

Syntax

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt, "random® ,N)
Description

cmsclsyn approximately solves the constant-matrix, upper bound p-synthesis problem
by minimization,

min o iy (R +UQV)

for given matrices R € C"x,,, U € C"x,, V e C'x,, and a set A C C™x,. This applies to
constant matrix datain R, U, and V.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure) minimizes, by choice of

Q. QOPT is the optimum value of Q, the upper bound of mussv(R+U*Q*V,BLK),

BND. The matrices R,U and V are constant matrices of the appropriate dimension.
BlockStructure is a matrix specifying the perturbation blockstructure as defined for
mUssv.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT) uses the options specified
by OPT in the calls to mussv. See mussvV for more information. The default value for OPT
is "cUsw".

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT) initializes the
iterative computation from Q = QINIT. Because of the nonconvexity of the overall
problem, different starting points often yield different final answers. If QINIT is an N-D
array, then the iterative computation is performed multiple times - the §'th optimization
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is initialized at Q = QINIT(:, -, i). The output arguments are associated with the best
solution obtained in this brute force approach.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT, "random” ,N) initializes
the iterative computation from N random instances of QINIT. If NCU is the number of
columns of U, and NRV is the number of rows of V, then the approximation to solving the
constant matrix p synthesis problem is two-fold: only the upper bound for p is minimized,
and the minimization is not convex, hence the optimum is generally not found. If U is

full column rank, or V is full row rank, then the problem can (and is) cast as a convex
problem, [Packard, Zhou, Pandey and Becker], and the global optimizer (for the upper
bound for p) is calculated.

More About

Algorithms

The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and computing

the mussv upper bound, followed by holding the upper bound multipliers fixed, and
minimizing the bound implied by choice of Q. If U or V is square and invertible, then the
optimization is reformulated (exactly) as an linear matrix inequality, and solved directly,
without resorting to the iteration.

References

Packard, A.K., K. Zhou, P. Pandey, and G. Becker, “A collection of robust control
problems leading to LMI's,” 30th IEEE Conference on Decision and Control, Brighton,
UK, 1991, p. 1245-1250.

See Also

dksyn | hinfsyn | mussv | robuststab | robustperf
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controlSystemTuner

Open Control System Tuner

Syntax

controlSystemTuner
controlSystemTuner(CL)
controlSystemTuner(mdl)
controlSystemTuner(ST)
controlSystemTuner(sessionfile)

Description

controlSystemTuner opens the Control System Tuner app. This app lets you to tune
any control system architecture to meet your design goals. You can tune multiple fixed-
order, fixed-structure control elements distributed over one or more feedback loops.

You can tune control systems modeled in MATLAB® or in Simulink (requires Simulink
Control Design™ software). When invoked without input arguments, Control System
Tuner opens to for tuning the default single-loop feedback control system architecture.

controlSystemTuner (CL) opens the app for tuning the control architecture specified
in the genss model CL.

controlSystemTuner(mdl) opens the app for tuning blocks in a Simulink model.

controlSystemTuner (ST) opens the app for tuning a Simulink model associated with
an slTuner interface, ST. Control System Tuner takes information such as analysis
points and operating points from ST.

controlSystemTuner(sessionfile) opens the app and loads a previously saved
session.

Examples

. “Specify Control Architecture in Control System Tuner”
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Input Arguments

CL — Control system to tune
generalized state-space (genss) model

Control system to tune, specified as a generalized state-space genss model. If your
control architecture does not match Control System Tuner’s predefined control
architecture, create a generalized state-space (genss) model with tunable components
representing your controller elements. Build the genss model from fixed-value LTI
models and tunable Control Design Blocks. For more information, see “Building Tunable
Models”.

mdl — Control system to tune
string

Control system to tune, specified as a string.

If you have Simulink Control Design software, you can model an arbitrary control system
architecture in a Simulink model and tune the model in Control System Tuner. The
string mdl is the name of a Simulink model saved in the current working directory or on
the MATLAB path.

ST — Interface to Simulink model of control system to tune
slTuner interface

Interface to a Simulink model of the control system to tune, specified as an slTuner
interface. Use an sITuner interface to preconfigure analysis points, operating points
for linearization, and other aspects of the tuning session. When you use the syntax
controlSystemTuner (ST) to open Control System Tuner, the app takes this
configuration from the sITuner interface.

sessionfile — Saved Control System Tuner session data
string

Saved Control System Tuner session data, specified as a string.

When you use Control System Tuner, you can click ¥ill Save Session to save session
data to disk such as tuning goals you have created, response I/Os you have defined,
operating points, and stored designs. The string sessionfile is the name of a session data
file saved in the current working directory or on the MATLAB path. The software also
opens the Simulink model associated with the saved session.
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More About

. “Tuning with Control System Tuner”

See Also

slTuner
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cpmargin

Coprime stability margin of plant-controller feedback loop

Syntax

[MARG, FREQ] cpmargin(P,C)

[MARG,FREQ] = cpmargin(P,C,TOL)

Description

[MARG,FREQ] = cpmargin(P,C) calculates the normalized coprime factor/gap metric
robust stability of the multivariable feedback loop consisting of C in negative feedback
with P. C should only be the compensator in the feedback path, not any reference
channels, if it is a two degree-of-freedom (2-Dof) architecture. The output MARG contains
upper and lower bound for the normalized coprime factor/gap metric robust stability
margin. FREQ is the frequency associated with the upper bound.

[MARG,FREQ] = cpmargin(P,C,TOL) specifies a relative accuracy TOL for calculating
the normalized coprime factor/gap metric robust stability margin. (TOL=1e-3 by default).

See Also

gapmetric | wcmargin
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dcgainmr

Reduced order model

Syntax

[sysr,syse,gain] = dcgainmr(sys,ord)

Description

[sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order model of a
continuous-time LTI system SYS by truncating modes with least DC gain.

Specify your LTI continuous-time system in sys. The order is specified in ord.
This function returns:

sysr—The reduced order models (a multidimensional array if sys is an LTI array)
syse—The difference between sys and sysr (Ssyse=sys-sysr)
gain—The g-factors (dc-gains)

The DC gain of a complex mode
1/ (s+p))*c*b*"
is defined as

norm(b)*norm(c)/abs(p)

See Also

reduce

2-37



2 Alphabetical List

2-38

decay

Quadratic decay rate of polytopic or affine P-systems

Syntax

[drate,P] = decay(ps,options)

Description

For affine parameter-dependent systems

E@p)x = A@p)x, p@) = @:1®), . . ., pa(9))

or polytopic systems
E@)x = A(t)x, (A, E) € Co{(Ay, Ey), . . ., (An, EY}, H) x = A(t)x, (A, E) € Co{(Ay, Ey), . . ., (An,
E.)},

decay returns the quadratic decay rate drate, i.e., the smallest a € R such that
ATQE + EQA" < a@

holds for some Lyapunov matrix @ > 0 and all possible values of (4, E). Two control
parameters can be reset via options(1l) and options(2):

If options(1)=0 (default), decay runs in fast mode, using the least expensive
sufficient conditions. Set options(1)=1 to use the least conservative conditions.

options(2) is a bound on the condition number of the Lyapunov matrix P. The
default is 109.

See Also
quadstab | psys | pdlistab
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decinfo

Describe how entries of matrix variable X relate to decision variables

Syntax
decinfo(Imisys)

decX = decinfo(lmisys,X)

Description

The function decinfo expresses the entries of a matrix variable X in terms of the decision
variables x1, . . ., xy. Recall that the decision variables are the free scalar variables of the
problem, or equivalently, the free entries of all matrix variables described in Imisys.
Each entry of X is either a hard zero, some decision variable x,, or its opposite —x,,.

If X is the identifier of X supplied by Imivar, the command

decX = decinfo(lmisys,X)

returns an integer matrix decX of the same dimensions as X whose (i, j) entry is
* 01if X(, j) is a hard zero

+ nif X(i, j) = x, (the n-th decision variable)

+ —nif X@Q, j) = —x,

decX clarifies the structure of X as well as its entry-wise dependence on x;, . . ., xy. This
1s useful to specify matrix variables with atypical structures (see Imivar).

decinfo can also be used in interactive mode by invoking it with a single argument. It

then prompts the user for a matrix variable and displays in return the decision variable
content of this variable.
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Examples

Example 1
Consider an LMI with two matrix variables X and Y with structure:

+ X =x I; with x scalar

*  Yrectangular of size 2-by-1

If these variables are defined by

setImis([1)
X Imivar(1,[3 0])
Y Imivar(2,[2 1])

Imis = getlmis
the decision variables in X and Y are given by

dX = decinfo(Imis,X)

d

O O r X
oOr o
= OO

dY = decinfo(lImis,Y)

dy =
2
3
This indicates a total of three decision variables xi, xo, x3 that are related to the entries of
X and Y by
Oy 0 0O o
x =50 X ODY:D;[
ﬁo 0 x H L

Note that the number of decision variables corresponds to the number of free entries in X
and Y when taking structure into account.
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Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block
and one 2-by-2 scalar block, and is declared by

setimis([])
X = Imivar(l1,[2 1;2 0])

Imis = getlmis

The decision variable distribution in X can be visualized interactively as follows:
decinfo(Imis)

There are 4 decision variables labeled x1 to x4 in this problem.

Matrix variable Xk of interest (enter k between 1 and 1, or O to quit):

?> 1

The decision variables involved in X1 are among {-x1,...,x4}.

Their entry-wise distribution in X1 is as follows
(0,j>0,-j<0 stand for 0,xj,-Xj, respectively):

X1 :
1 2 0 O
2 3 0 O
0O 0 4 0
0O 0 0 4

E e

Matrix variable Xk of interest (enter k between 1 and 1, or O to quit):

?>0

See Also

Imivar | mat2dec | dec2mat
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decnbr

Total number of decision variables in system of LMIs

Syntax

ndec = decnbr(Imisys)

Description

The function decnbr returns the number ndec of decision variables (free scalar
variables) in the LMI problem described in Imisys. In other words, ndec is the length of
the vector of decision variables.

Examples

For an LMI system Imis with two matrix variables X and Y such that

+  Xis symmetric block diagonal with one 2-by-2 full block, and one 2-by-2 scalar block
*  Yis 2-by-3 rectangular,

the number of decision variables is

ndec = decnbr(LMISs)

ndec
10

This is exactly the number of free entries in X and Y when taking structure into account
(see decinfo for more details).

See Also

dec2mat | decinfo | mat2dec
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dec2mat

Given values of decision variables, derive corresponding values of matrix variables

Syntax

valX = dec2mat(Imisys,decvars,X)

Description

Given a value decvars of the vector of decision variables, dec2mat computes the
corresponding value val X of the matrix variable with identifier X. This identifier is
returned by Imivar when declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI problem and
correspond to the free entries of the matrix variables Xj, . . ., Xg. Since LMI solvers
return a feasible or optimal value of the vector of decision variables, dec2mat is useful to
derive the corresponding feasible or optimal values of the matrix variables.

Examples

See the description of Feasp.

See Also

mat2dec | decnbr | decinfo
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defcx

Help specify ¢’x objectives for mincx solver

Syntax

[V1l,...,VK] = defcx(Imisys,n,X1,...,Xk)

Description

defcx is useful to derive the ¢ vector needed by mincx when the objective is expressed in
terms of the matrix variables.

Given the identifiers X1, . . . , Xk of the matrix variables involved in this objective, defcx
returns the values V1, . . ., VK of these variables when the n-th decision variable is set to
one and all others to zero.

See Also

mincx | decinfo
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dellmi

Remove LMI from system of LMIs

Syntax

newsys = dellmi(Imisys,n)

Description

delImi deletes the n-th LMI from the system of LMIs described in Imisys. The updated
system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds
to the identifier returned by newlmi. Since this ranking is not modified by deletions, it
is safer to refer to the remaining LMIs by their identifiers. Finally, matrix variables that
only appeared in the deleted LMI are removed from the problem.

Examples

Suppose that the three LMIs
AT X1+ X1A1+@ <0
AF Xy +XyAq +@y <0
AT X+ X3A5 +Q5 <0

have been declared in this order, labeled LMI11, LMI2, LMI3 with newlmi, and stored in
Imisys. To delete the second LMI, type

Imis = dellmi(Imisys,LMI2)

Imis now describes the system of LMIs
A{X1 + XA +6; <0
Af X3 +X3A5 +Q3 <0
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and the second variable X; has been removed from the problem since it no longer appears
in the system.

To further delete LMI3 from the system, type
Imis = dellmi(Imis,LMI3)

or equivalently

Imis = dellmi(Imis,3)

Note that the system has retained its original ranking after the first deletion.

See Also

newlmi | Imiedit | Imiinfo
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delmvar

Remove one matrix variable from LMI problem

Syntax

newsys = delmvar(Imisys,X)

Description

delmvar removes the matrix variable X with identifier X from the list of variables
defined in Imisys. The identifier X should be the second argument returned by Imivar
when declaring X. All terms involving X are automatically removed from the list of LMI
terms. The description of the resulting system of LMIs is returned in newsys.

Examples

Consider the LMI

EATY +BTYA+Q CX+D

C
0< C
H xTcT+pT ~«x+xT)f

involving two variables X and Y with identifiers X and Y. To delete the variable X, type
Imisys = delmvar(lImisys,X)
Now Imisys describes the LMI
OATyB + BTyA + C
0< IjA YB+B" YA +@Q DE
DT oF

with only one variable Y. Note that Y is still identified by the label Y.

See Also

Imivar | setmvar | Imiinfo
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diag

Diagonalize vector of uncertain matrices and systems

Syntax

v = diag(x)

Description

If x is a vector of uncertain system models or matrices, diag(x) puts X on the main
diagonal. If X is a matrix of uncertain system models or matrices, diag(x) is the main
diagonal of x. diag(diag(x)) is a diagonal matrix of uncertain system models or
matrices.

Examples

The statement produces a diagonal system mxg of size 4-by-4. Given multivariable
system XX, a vector of the diagonal elements of xxg is found using diag.

X = rss(3,4,1);
xg = frd(x, logspace(-2,2,80));

size(xQ)

FRD model with 4 output(s) and 1 input(s), at 80 frequency point(s).

mxg = diag(xg);
size(mxg)
FRD model with 4 output(s) and 4 input(s), at 80 frequency point(s).

xxg = [xg(1:2,1) xg(3:4,1)1;

m = diag(xxg);

size(m)

FRD model with 2 output(s) and 1 input(s), at 80 frequency point(s).

See Also
append
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dksyn

Robust controller design using p-synthesis

Syntax

[k,clp,bnd]

dksyn(p,nmeas,ncont)

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)

L---1 = dksyn(p)

Description

[k,clp,bnd] = dksyn(p,nmeas,ncont) synthesizes a robust controller k for the
uncertain open-loop plant model p via the D-K or D-G-K algorithm for pu-synthesis. p is
an uncertain state-space uss model. The last nmeas outputs and ncont inputs of p
are assumed to be the measurement and control channels. K is the controller, clp is the
closed-loop model and bnd is the robust closed-loop performance bound. p, k, clp, and
bnd are related as follows:

clp = Ift(p,k);
bndl = robustperf(clp);
bnd = 1/bnd.LowerBound

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt) specifies user-defined options opt for
the D-K or D-K-G algorithm. Use dksynOptions to create opt.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...) returns a log of the algorithm
execution in dkinfo. dkinfo is an N-by-1 cell array where N is the total number of
iterations performed. The ith cell contains a structure with the following fields:

Field Description

K Controller at ith iteration, a Ss object
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Field Description

Bnds Robust performance bound on the closed-loop system (double)
DL Left D-scale, an ss object

DR Right D-scale, an ss object

GM Offset G-scale, an SS object

GR Right G-scale, an ss object

GFC Center G-scale, an Ss object

MussvBnds Upper and lower p bounds, an Frd object

Mussvinfo Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)

allows you to use information from a previous dksyn iteration.
prevdkinfo is a structure from a previous attempt at designing a robust controller
using dksyn. prevdkinfo is used when the dksyn starting iteration is not 1
(opt.StartinglterationNumber = 1) to determine the correct D-scalings to initiate
the iteration procedure.

[---1 = dksyn(p) takes p as a uss object that has two-input/two-output partitioning
as defined by mktito.

Examples

The following statements create a robust performance control design for an unstable,
uncertain single-input/single-output plant model. The nominal plant model, G, is an

unstable first order system S
s—

G = tf(1,[1 -1D);

The model itself is uncertain. At low frequency, below 2 rad/s, it can vary up to 25% from
its nominal value. Around 2 rad/s the percentage variation starts to increase and reaches
400% at approximately 32 rad/s. The percentage model uncertainty is represented by the
weight Wu which corresponds to the frequency variation of the model uncertainty and the
uncertain LTI dynamic object InputUnc.
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Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn("InputUnc®,[1 1]);

The uncertain plant model Gpert represents the model of the physical system to be
controlled.

Gpert = G*(1+InputUnc*Wu);

The robust stability objective is to synthesize a stabilizing LTI controller for all the plant
models parameterized by the uncertain plant model, Gpert. The performance objective
is defined as a weighted sensitivity minimization problem. The control interconnection
structure is shown in the following figure.

Plant model set: Gpert

W, Lo

The sensitivity function, S, is defined as

1
1+PK

where P is the plant model and K is the controller. A weighted sensitivity minimization
problem selects a weight Wp, which corresponds to the inverse of the desired sensitivity
function of the closed-loop system as a function of frequency. Hence the product of the
sensitivity weight Wp and actual closed-loop sensitivity function is less than 1 across
all frequencies. The sensitivity weight Wp has a gain of 100 at low frequency, begins to
decrease at 0.006 rad/s, and reaches a minimum magnitude of 0.25 after 2.4 rad/s.

Wp = tf([1/4 0.6],[1 0.006]);

The defined sensitivity weight Wp implies that the desired disturbance rejection should
be at least 100:1 disturbance rejection at DC, rise slowly between 0.006 and 2.4 rad/s,
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and allow the disturbance rejection to increase above the open-loop level, 0.25, at high
frequency.

When the plant model is uncertain, the closed-loop performance objective is to achieve
the desired sensitivity function for all plant models defined by the uncertain plant model,
Gpert. The performance objective for an uncertain system is a robust performance
objective. A block diagram of this uncertain closed-loop system illustrating the
performance objective (closed-loop transfer function from d—e) is shown.

d e
— p -
— -
i ¥
K |

From the definition of the robust performance control objective, the weighted, uncertain
control design interconnection model, which includes the robustness and performance
objectives, can be constructed and is denoted by P. The robustness and performance
weights are selected such that if the robust performance structure singular value, bnd,
of the closed-loop uncertain system, clp, is less than 1 then the performance objectives
have been achieved for all the plant models in the model set.

You can form the uncertain transfer matrix P from [d; u] to [e; y] using the
following commands.

P = [Wp; 1 J*[1 Gpert];
[K,clp,bnd] = dksyn(P,1,1);
bnd

bnd =
0.6819

The controller K achieves a robust performance p value bnd of 0.6819. Therefore you have
achieved the robust performance objectives for the given problem.

You can use the robustperf command to analyze the closed-loop robust performance of
clp.

[rpmarg, rpmargunc, report, info] = robustperf(clp);
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Enter disp(report) to display the report.

Limitations

There are two shortcomings of the D-K iteration control design procedure:

+ Calculation of the structured singular value pA(") is approximated by its upper bound.
This is not a serious problem because the value of u and its upper bound are often
close.

* The D-K iteration is not guaranteed to converge to a global, or even local minimum.
This is a serious problem, and represents the biggest limitation of the design
procedure.

In spite of these drawbacks, the D-K iteration control design technique appears to work
well on many engineering problems. It has been applied to a number of real-world
applications with success. These applications include vibration suppression for flexible
structures, flight control, chemical process control problems, and acoustic reverberation
suppression in enclosures.

Tutorials

Control of Spring-Mass-Damper Using Mixed mu-Synthesis

More About

Algorithms

dksyn synthesizes a robust controller via D-K iteration. The D-K iteration procedure

1s an approximation to p-synthesis control design. The objective of p-synthesis is to
minimize the structure singular value p of the corresponding robust performance
problem associated with the uncertain system p. The uncertain system p is an open-

loop interconnection containing known components including the nominal plant model,
uncertain parameters, ucomplex, and unmodeled LTI dynamics, ultidyn, and
performance and uncertainty weighting functions. You use weighting functions to include
magnitude and frequency shaping information in the optimization. The control objective
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is to synthesize a stabilizing controller k that minimizes the robust performance p value,
which corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first over the
controller variable K (holding the D variable associated with the scaled p upper bound
fixed), and then over the D variable (holding the controller K variable fixed). The D-K
iteration procedure is not guaranteed to converge to the minimum p value, but often
works well in practice.

dksyn automates the D-K iteration procedure and the options object dksynOptions
allows you to customize its behavior. Internally, the algorithm works with the
generalized scaled plant model P, which is extracted from a uss object using the
command Iftdata.

The following is a list of what occurs during a single, complete step of the D-K iteration.

1 (In the first iteration, this step is skipped.) The p calculation (from the previous step)
provides a frequency-dependent scaling matrix, Dy. The fitting procedure fits these
scalings with rational, stable transfer function matrices. After fitting, plots of

o (D (G F(P,KXj&DF(j o)
and

(DG F (P KXjwDF (o)
are shown for comparison.

(In the first iteration, this step is skipped.) The rational Dis absorbed into the open-
loop interconnection for the next controller synthesis. Using either the previous

frequency-dependent D’s or the just-fit rational D , an estimate of an appropriate
value for the H, norm is made. This is simply a conservative value of the scaled
closed-loop H,, norm, using the most recent controller and either a frequency sweep
(using the frequency-dependent D's) or a state-space calculation (with the rational
D’s).

2 (The first iteration begins at this point.) A controller is designed using H,, synthesis
on the scaled open-loop interconnection. If you set the DisplayWhileAutolter field
in dksynOptions to "on*, the following information is displayed:
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a The progress of the y-iteration is displayed.
b The singular values of the closed-loop frequency response are plotted.

¢ You are given the option to change the frequency range. If you change it, all
relevant frequency responses are automatically recomputed.

d  You are given the option to rerun the H,, synthesis with a set of modified
parameters if you set the Autolter field in dksynOptions to "off". This is
convenient if, for instance, the bisection tolerance was too large, or if maximum
gamma value was too small.

3 The structured singular value of the closed-loop system is calculated and plotted.

4 Aniteration summary is displayed, showing all the controller order, as well as the
peak value of p of the closed-loop frequency responses.

5 The choice of stopping or performing another iteration is given.

Subsequent iterations proceed along the same lines without the need to reenter the
iteration number. A summary at the end of each iteration is updated to reflect data from
all previous iterations. This often provides valuable information about the progress of the
robust controller synthesis procedure.

Interactive Fitting of D-Scalings

Setting the Autol ter field in dksynOptions to "oFf" requires that you interactively
fit the D-scales each iteration. During step 2 of the D-K iteration procedure, you are
prompted to enter your choice of options for fitting the D-scaling data. You press return
after, the following is a list of your options.

Enter Choice (return for list):

Choices:

nd Move to Next D-Scaling
nb Move to Next D-Block

i Increment Fit Order

d Decrement Fit Order
apf Auto-PreFit

mx 3 Change Max-Order to 3
at 1.01 Change Auto-PreFit tol to 1.01
0 Fit with zeroth order
2 Fit with second order
n Fit with n"th order
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e Exit with Current Fittings
S See Status

* nd and nb allow you to move from one D-scale data to another. nd moves to the next
scaling, whereas nb moves to the next scaling block. For scalar D-scalings, these are
identical operations, but for problems with full D-scalings, (perturbations of the form
61) they are different. In the (1,2) subplot window, the title displays the D-scaling
block number, the row/column of the scaling that is currently being fitted, and the
order of the current fit (with d for data when no fit exists).

* You can increment or decrement the order of the current fit (by 1) using i and d.

+ apf automatically fits each D-scaling data. The default maximum state order of
individual D-scaling is 5. The mx variable allows you to change the maximum D-
scaling state order used in the automatic prefitting routine. mx must be a positive,
nonzero integer. at allows you to define how close the rational, scaled u upper bound
is to approximate the actual p upper bound in a norm sense. Setting at to 1 would
require an exact fit of the D-scale data, and is not allowed. Allowable values for at
are greater than 1. This setting plays a role (mildly unpredictable, unfortunately) in
determining where in the (D,K) space the D-K iteration converges.

*  Entering a positive integer at the prompt will fit the current D-scale data with that
state order rational transfer function.

* e exits the D-scale fitting to continue the D-K iteration.

* The variable s displays a status of the current and fits.
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crossover region,” AIAA Journal of Guidance, Dynamics and Control, Vol. 17, no.
2, March-April, 1994, p. 370-377.

[2] Balas, G.J., A.K. Packard, and J.T. Harduvel, “Application of pu-synthesis techniques
to momentum management and attitude control of the space station,” AIAA
Guidance, Navigation and Control Conference, New Orleans, August 1991.

[3] Doyle, J.C., K. Lenz, and A. Packard, “Design examples using p-synthesis: Space
shuttle lateral axis FCS during reentry,” NATO ASI Series, Modelling,
Robustness, and Sensitivity Reduction in Control Systems, vol. 34, Springer-
Verlag, Berlin 1987.
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[4] Packard, A., J. Doyle, and G. Balas, “Linear, multivariable robust control with a p
perspective,” ASME Journal of Dynamic Systems, Measurement and Control,
50th Anniversary Issue, Vol. 115, no. 2b, June 1993, p. 310-319.

[56] Stein, G., and J. Doyle, “Beyond singular values and loopshapes,” AIAA Journal of
Guidance and Control, Vol. 14, No. 1, January, 1991, p. 5-16.

See Also
dksynOptions | mktito | mussv | h2syn | hinfsyn | robuststab | robustperf |

wcgain | wesens | wemargin
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dksynOptions

Set options for dksyn

Syntax

opt = dksynOptions

opt = dksynOptions(Name,Value)

Description

opt = dksynOptions returns the default options for dksyn.

opt = dksynOptions(Name,Value) returns an option set with additional options

specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* ). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

dksynOptions takes the following Name arguments:
"FrequencyVector”

Frequencies for mu-analysis, specified as a vector. When empty, dksyn automatically
chooses the frequency range and number of points.

Default: []
"InitialController-

Controller for initializing first iteration, specified as a state-space (Ss) model.
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Default: []
"Autolter-

Automated mu-synthesis mode, specified as one of the strings "on® or "off". When
automated mu-synthesis mode is off, dksyn performs an interactive D-K iteration
procedure. You are prompted to fit the D-scale data and provide input on the control
design process.

Default: "on*
"DisplayWhileAutolter”

Status of display in automated mu-synthesis mode, specified as one of the strings "off"
or "on". When the display is on, and automated mu-synthesis mode is active, dksyn
displays the iteration progress during the synthesis computation.

Default: "off"
"StartinglterationNumber*

Iteration number for initiating iteration procedure, specified as a positive integer. Use
this option when you provide the prevdkinfo argument to dksyn to use information

from a previous dksyn calculation. In this case, specify the starting iteration number

from which to resume the iteration procedure.

Default: 1
"NumberOfAutol terations”

Number of iterations to perform in automatic mu-synthesis mode, specified as a positive
integer.

Default: 10
"MixedMU"

Flag indicating whether to perform mixed real/complex mu-synthesis when real
parameters are present, specified as one of the strings "off" or "on". Mixed mu-
synthesis accounts for uncertain real parameters directly in the synthesis process.
Setting "MixedMU" to "on" when you have uncertain real parameters can result in
improved robust performance of the synthesized controller.
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Default: "off"
"AutoScalingOrder™

State order for fitting D-scaling and G-scaling data for real/complex mu-synthesis,
specified as a vector of the form [dorder,gorder].

Default: [5 2] (5th-order D-scalings and 2nd-order G-scalings)
"AutolterSmartTerminate*

Automatic termination mode, specified as one of the strings "on" or "off". When
AutolterSmartTerminate is "on", the iteration procedure terminates based on
the progress of the design iteration. Set the tolerance for automatic termination using
AutolterSmartTerminateTol.

In automatic termination mode, the iteration procedure terminates when a stopping
criterion is satisfied. The stopping criterion involves the objective value (peak value,
across frequency, of the upper bound for p) in the current iteration, denoted v,. The

stopping criterion also involves the objective value in the previous two iterations, denoted
v_; and v_g. The stopping criterion is satisfied for lack of progress if:

|vg —v_1| < AutolterSmartTerminateTol *vy,

and

[v_y —v_g| < AutolterSmartTerminateTol *v,.

The stopping criteria is also satisfied for an undesirable significant increase in the
objective value if:

vy >v_; + 20 * AutolterSmartTerminateTol * v;.

Default: "on"
"AutolterSmartTerminateTol "
Tolerance for Autol terSmartTerminate mode.

Default: 0.005
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Output Arguments
options

Option set containing the specified options for the dksyn command.

Examples

Create Options Set for dksyn

Create an options set for a dksyn run using a logarithmic distribution of frequency
points for analysis and performing 24 iterations.

options = dksynOptions(“FrequencyVector"®, logspace(-2,3,80), ...
“*NumberOfAutolterations®,24);

Alternatively, use dot notation to set the values of options.
options = dksynOptions;

options.FrequencyVector = logspace(-2,3,80);
options.NumberOfAutolterations = 24;

See Also
| dksyn
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dmplot

Interpret disk gain and phase margins

Syntax

dmplot
dmplot(diskgm)
[dgm,dpm] = dmplot

Description

dmplot plots disk gain margin (dgm) and disk phase margin (dpm). Both margins are
derived from the largest disk that

*  Contains the critical point (-1,0)

* Does not intersect the Nyquist plot of the open-loop response L

diskgm is the radius of this disk and a lower bound on the classical gain margin.

dmplot(diskgm) plots the maximum allowable phase variation as a function of the
actual gain variation for a given disk gain margin diskgm (the maximum gain variation
being diskgm). The closed-loop system is guaranteed to remain stable for all combined
gain/phase variations inside the plotted ellipse.

[dgm,dpm] = dmplot returns the data used to plot the gain/phase variation ellipse.

Examples

When you call dmplot (without an argument), the resulting plot shows a comparison of a
disk margin analysis with the classical notations of gain and phase margins. The Nyquist
plot is of the loop transfer function L(s)

|
L(s) = 20
(s+1D(s” +1.65 +16)
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dmplot

This figure shows a comparison of a disk margin analysis
with the classical notations of gain and phase margins.
The Nyquist plot is of the loop transfer function

L = 4(s/30 + 1)/((s+1)*(s™2 + 1.6s + 16))

- The Nyquist plot of L corresponds to the blue line

- The unit disk corresponds to the dotted red line

- GM and PM indicate the location of the classical gain

and phase margins for the system L.

- DGM and DPM correspond to the disk gain and phase
margins. The disk margins provide a lower bound on
classical gain and phase margins.

- The disk margin circle corresponds to the dashed black
line. The disk margin corresponds to the largest disk
centered at (GMD + 1/GMD)/2 that just touches the
loop transfer function L. This location is indicated
by the red dot.
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Imaginary Axis

Disk gain margin (DGM) and disk phase margin (DPM) in the Nyguist plot
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Real Axis

The Nyquist plot of L corresponds to the blue line.
The unit disk corresponds to the dotted red line.

GM and PM indicate the location of the classical gain and phase margins for the
system L.

DGM and DPM correspond to the disk gain and phase margins, respectively. The disk
margins provide a lower bound on classical gain and phase margins.

The disk margin circle, represented by the dashed black line, corresponds to the
largest disk centered at (DGM + 1/DGM)/2 that just touches the loop transfer
function L. This location is indicated by the red dot.
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FPhase Variation (deq)
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The x-axis corresponds to the gain variation, in dB, and the y-axis corresponds to the
phase variation allowable, in degrees. For a disk gain margin corresponding to 3 dB
(1.414), the closed-loop system is stable for all phase and gain variations inside the blue
ellipse. For example, the closed-loop system can simultaneously tolerate +/— 2 dB gain
variation and +/— 14 deg phase variations.

dmplot(1.414)

Allowable Gain/Phase Variations for a 1.41 Disk Gain Margin.
(stability is guaranteed for all variations inside the ellipse)

[=-a]
T
I

Gain Variation (dB)

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems,
Ph.D. Thesis. Control Science and Dynamical Systems, University of Minnesota, 1980.
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Blight, J.D., R.L. Dailey, and Gangsass, D., “Practical control law design for aircraft
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See Also

wecmargin
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drawmag

Mouse-based tool for sketching and fitting

Syntax

[sysout,pts] = drawmag(data)

[sysout,pts] = drawmag(data, init_pts)

Description

drawmag interactively uses the mouse in the plot window to create pts (the frd object)
and sysout (a stable minimum-phase Ss object), which approximately fits the frequency
response (magnitude) in pts.

Input arguments:

data Either a frequency response object that is plotted as a reference, or
a constant matrix of the form [X,.in Xmax Ymin Ymax) Specifying the plot
window on the data.

init_pts Optional Frd objects of initial set of points

Output arguments:

sysout Stable, minimum-phase Ss object that approximately fits, in
magnitude, the pts data.

pts Frequency response of points.

While drawmag is running, all interaction with the program is through the mouse and/
or the keyboard. The mouse, if there is one, must be in the plot window. The program
recognizes several commands:

+  Clicking the mouse button adds a point at the cross-hairs. If the cross-hairs are
outside the plotting window, the points are plotted when the fitting, windowing, or
replotting mode is invoked. Typing a is the same as clicking the mouse button.

+ Typing r removes the point with frequency nearest that of the cross-hairs.
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+ Typing any integer between 0 and 9 fits the existing points with a transfer function
of that order. The fitting routine approximately minimizes the maximum error in a
log sense. The new fit is displayed along with the points, and the most recent previous
fit, if it exists.

+ Typing w uses the cross-hair location as the initial point in creating a window. Moving
the cross-hairs and clicking the mouse or pressing any key then gives a second point
at the new cross-hair location. These two points define a new window on the data,
which is immediately replotted. This is useful in fine tuning parts of the data. You can
call windowing repeatedly.

* Typing p simply replots the data using a window that covers all the current data
points as well as whatever was specified in in. Typically used after windowing to view
all the data.

* Typing k invokes the keyboard using the keyboard command. Be cautious when
using this option to avoid unintended changes to variables.

See Also
ginput | loglog
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evallmi

Given particular instance of decision variables, evaluate all variable terms in system of
LMIs

Syntax

evalsys = evallmi(Imisys,decvars)

Description

eval Imi evaluates all LMI constraints for a particular instance decvars of the vector
of decision variables. Recall that decvars fully determines the values of the matrix
variables Xj, . . ., Xkx. The “evaluation” consists of replacing all terms involving X, . . ., X
by their matrix value. The output evalsys is an LMI system containing only constant
terms.

The function eval Imi is useful for validation of the LMI solvers' output. The vector

returned by these solvers can be fed directly to eval Imi to evaluate all variable terms.
The matrix values of the left and right sides of each LMI are then returned by showlImi.

Observation
eval Imi is meant to operate on the output of the LMI solvers. To evaluate all LMIs

for particular instances of the matrix variables Xj, . . ., Xk, first form the corresponding
decision vector x with mat2dec and then call eval Imi with x as input.

Examples

Consider the feasibility problem of finding X > 0 such that
ATXA-X+1<0

where
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405 020
"B -07H

This LMI system is defined by:

setimis([])

X = Imivar(1,[2 1]) % Full symmetric X
Imiterm([1 1 1 X],A",A) % LMI #1: A"*X*A
Imiterm([1 1 1 X],-1,1) % LMI #1: -X
Imiterm([2 1 1 0],1) % LMI #1: 1
Imiterm([-2 1 1 X],1,1) % LMI #2: X

Imis = getlmis

To compute a solution xfeas, call feasp by
[tmin,xfeas] = feasp(Imis)

The result is

tmin =
-4.7117e+00

xfeas"™ =
1.1029e+02 -1.1519e+01 1.1942e+02

The LMI constraints are therefore feasible since tmin < 0. The solution X corresponding
to the feasible decision vector xfeas would be given by X = dec2mat(Imis, xfeas, X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing
evals = evallmi(Imis, xfeas)

The left and right sides of the first and second LMIs are then given by

[Ihsl,rhsl]
[1hs2,rhs2]

showlmi(evals,1)
showlmi(evals, 2)

and the test

eig(lhsl-rhsl)

ans =
-8.2229e+01
-5.8163e+01



evallmi

confirms that the first LMI constraint is satisfied by xfeas.

See Also

showlmi | setmvar | decZ2mat | mat2dec
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evalSpec

Evaluate tuning requirements for tuned control system

Syntax

[Hspec,fval] = evalSpec(Req,T)
[Hspec,fval] = evalSpec(Req,T, Info)
Description

[Hspec,fval] = evalSpec(Req,T) returns the normalized value, fval, of a tuning
requirement evaluated for a tuned control system T. The evalSpec command also
returns the transfer function, Hspec, used to compute this value.

[Hspec,fval] = evalSpec(Req, T, Info) uses the Info structure returned by

systune for correct scaling of MIMO open-loop requirements, such as loop shapes and
stability margins.

Examples

Evaluate Requirements for Tuned System

Tune a control system with systune , and evaluate the tuning requirements with
evalSpec.

Open the Simulink® model rct_airframe2

open_system("rct_airframe2”)



evalSpec

Two-loop autopilot for controlling the vertical acceleration of an airframe

!
delta trim az |
az ref —
!
N 3 = Fuet Bl _ _
i \‘] w= Cx+Du Fin Deflaction
MIMD Controller t
q I
Airframe Model
(|

=z Response

Create tracking, roll-off, stability margin, and disturbance rejection requirements for
tuning the control system.

Reql = TuningGoal.Tracking("az ref","az",1);
Reg2 = TuningGoal.Gain("delta fin","delta fin",tFf(25,[1 0]));
Reg3 = TuningGoal .Margins(“delta fin",7,45);

MaxGain = frd([2 200 200],[0.02 2 200]);
Reg4 = TuningGoal.Gain("delta fin","az",MaxGain);

Create a slTunable interface and tune the model using these tuning requirements.

STO = slTunable("rct_airframe2”, "MIMO Controller®);
addControl (STO, "delta fin");

rng default
[ST1,fSoft,~,Info] = systune(STO,[Reql,Req2,Req3,Req4]);

Final: Soft = 1.15, Hard = -Inf, lterations = 73

ST1 is a tuned version of the sITunable interface to the control system. ST1 contains
the tuned values of the tunable parameters of the MIMO controller in the model.

Evaluate the margin requirement for the tuned system.
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[hspec,fval] = evalSpec(Req3,ST1,Info);
fval
fval =

0.5434

The normalized value of the requirement is less than 1, indicating that the tuned system
satisfies the margin requirement. For more information about how the normalized value
of this requirement is calculated, see the TuningGoal .Margins reference page.

Evaluate the tracking requirement for the tuned system.
[hspec,fval] = evalSpec(Reql,ST1, Info);

fval

fval =

1.1460

The tracking requirement is nearly met, but the value exceeds 1, indicating a small
violation. To further assess the violation, you can use viewSpec to examine the
requirement against the tuned control system as a function of frequency.

Input Arguments

Req — Tuning requirement to evaluate
TuningGoal requirement object | vector of TuningGoal objects

Tuning requirement to evaluate, specified as a TuningGoal requirement object or vector
of TuningGoal objects. TuningGoal requirement objects include:

* TuningGoal .Tracking

* TuningGoal .Gain

* TuningGoal .WeightedGain

* TuningGoal .Variance



evalSpec

* TuningGoal .WeightedVariance
* TuningGoal .LoopShape

* TuningGoal _Margins

* TuningGoal .Poles

* TuningGoal .ControllerPoles

T — Tuned control system
generalized state-space model | slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an
slTuner interface to a Simulink model. T is typically the result of using the tuning
requirement to tune control system parameters with systune.

Example: [T, fSoft,gHard, Info]
a tunable genss model

Example: [T, fSoft,gHard, Info]
is a sl Tuner interface object

systune(TO0,SoftReq,HardReq), where TO 1s

systune(STO, SoftReq,HardReq), where STO

Info — System information
data structure returned by systune

System information, specified as the data structure returned by systune when you use
that command to tune a control system. Use Info when validating tuned MIMO systems.
Doing so ensures that viewSpec correctly scales open-loop requirements such as loop
shapes and stability margins.

Output Arguments

Hspec — transfer function associated with requirement
state-space model

Transfer function associated with the tuning requirement, returned as a state-space (SS)
model. evalSpec uses Hspec to compute the evaluated requirement, fval.

For example, suppose Req is a TuningGoal gain requirement that limits the gain, H(s),
between some specified input and output to the gain profile, w(s). In that case, Hspec is
given by:
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Hspec (s) = H(s).

w(s)

fval is the peak gain of Hspec. If H(s) satisfies the tuning requirement, fval <= 1.

fval — Normalized value of tuning requirement
positive scalar

Normalized value of tuning requirement, returned as a positive scalar. The normalized
value is a measure of how closely the requirement is met in the tuned system. The
tuning requirement is satisfied if fval < 1. For information about how each type of
TuningGoal requirement is converted into a normalized value, see the TuningGoal
requirement objects.

More About

. “Generalized Models”

See Also

TuningGoal .Tracking | TuningGoal .Sensitivity | TuningGoal .Overshoot

| TuningGoal .MinLoopGain | TuningGoal .MaxLoopGain | TuningGoal .Gain |
TuningGoal .Margins | TuningGoal .WeightedGain | TuningGoal .Variance |
TuningGoal .WeightedVariance | TuningGoal .LoopShape | TuningGoal .Poles
| TuningGoal .ControllerPoles | genss | slTuner | systune | systune (for
slTuner) | viewSpec
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feasp

Compute solution to given system of LMIs

Syntax

[tmin,xfeas] = feasp(Imisys,options,target)

Description

The function feasp computes a solution xfeas (if any) of the system of LMIs described
by Imisys. The vector xfeas is a particular value of the decision variables for which all
LMIs are satisfied.

Given the LMI system

NTLxN <MTRwM,
xTeas is computed by solving the auxiliary convex program:

Minimize t subject to N?L(x) N-M"R(x) M<tI.

The global minimum of this program is the scalar value tmin returned as first output
argument by feasp. The LMI constraints are feasible if tmin <0 and strictly feasible

if tmin < 0. If the problem is feasible but not strictly feasible, tmin is positive and very
small. Some post-analysis may then be required to decide whether xfeas is close enough
to feasible.

The optional argument target sets a target value for tmin. The optimization code
terminates as soon as a value of ¢ below this target is reached. The default value is
target =0.

Note that xfeas is a solution in terms of the decision variables and not in terms of the

matrix variables of the problem. Use dec2mat to derive feasible values of the matrix
variables from xfeas.
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Control Parameters

The optional argument options gives access to certain control parameters for the
optimization algorithm. This five-entry vector is organized as follows:

options(1) is not used.

options(2) sets the maximum number of iterations allowed to be performed by the
optimization procedure (100 by default).

options(3) resets the feasibility radius. Setting options(3) to a value R> 0
further constrains the decision vector x = (x;, . . ., xy) to lie within the ball

N
Zx? <R?
1=

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility
radius 1s a simple means of controlling the magnitude of solutions. Upon termination,
feasp displays the f-radius saturation, that is, the norm of the solution as a
percentage of the feasibility radius R.

The default value is R = 109. Setting options(3) to a negative value activates the
“flexible bound” mode. In this mode, the feasibility radius is initially set to 108, and
increased if necessary during the course of optimization

options(4) helps speed up termination. When set to an integer value J > 0, the code
terminates if ¢ did not decrease by more than one percent in relative terms during the
last o iterations. The default value is 10. This parameter trades off speed vs. accuracy.
If set to a small value (< 10), the code terminates quickly but without guarantee of
accuracy. On the contrary, a large value results in natural convergence at the expense
of a possibly large number of iterations.

options(5) = 1 turns off the trace of execution of the optimization procedure.
Resetting options(5) to zero (default value) turns it back on.

Setting option(1) to zero is equivalent to setting the corresponding control parameter
to its default value. Consequently, there is no need to redefine the entire vector when
changing just one control parameter. To set the maximum number of iterations to 10, for
instance, it suffices to type

options=zeros(1,5) % default value for all parameters
options(2)=10



feasp

Memory Problems

When the least-squares problem solved at each iteration becomes ill conditioned, the
feasp solver switches from Cholesky-based to QR-based linear algebra (see “Memory
Problems” on page 2-272 for details). Since the QR mode typically requires much more
memory, MATLAB may run out of memory and display the message

??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no
additional swap space is available, set options(4) = 1. This will prevent switching to
QR and Feasp will terminate when Cholesky fails due to numerical instabilities.

Examples

Consider the problem of finding P > I such that

Ai’1P+PA1 <0
T
Ay P+PAy <0

ATP+PA; <0

with data
1 20 0.8 1500 14 09°C
Al=0 gA2=0 gA3=p C
0l -39 01.3 -2.7Q 00.7 -2.0¢

This problem arises when studying the quadratic stability of the polytope of matrices
ColA;, A, As}.

To assess feasibility with Feasp, first enter the LMIs Equation 2-4 -Equation 2-6:

setinmis([])
p = Imivar(1,[2 1])
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Imiterm([1 1 1 p],1,al,"s") % LMI #1
Imiterm([2 1 1 p].,1,a2,"s") % LMI #2
Imiterm([3 1 1 p],1,a3,"s") % LMI #3
Imiterm([-4 1 1 p].1,1) % LMI #4: P
Imiterm([4 1 1 0],1) % LMI #4: 1

Imis = getlmis
Then call Feasp to find a feasible decision vector:
[tmin,xfeas] = feasp(Imis)

This returns tmin = -3.1363. Hence Equation 2-4 - Equation 2-6 is feasible and the
dynamical system x = A(f)x is quadratically stable for A(f) € Co{A;, Az, As}.

To obtain a Lyapunov matrix P proving the quadratic stability, type
P = decZmat(Imis,xfeas,p)
This returns

[270.8 12640
“Ho6.4 155.1H

It is possible to add further constraints on this feasibility problem. For instance, you can
bound the Frobenius norm of P by 10 while asking tmin to be less than or equal to —1.
This i1s done by

[tmin,xfeas] = feasp(lImis,[0,0,10,0,0],-1)

The third entry 10 of options sets the feasibility radius to 10 while the third argument
-1 sets the target value for tmin. This yields tmin = -1.1745 and a matrix P with
largest eigenvalue A, (P) = 9.6912.

References

The feasibility solver Feasp is based on Nesterov and Nemirovski's Projective Method
described in:

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, STAM, Philadelphia, 1994.



feasp

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix
Inequalities,” Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, p. 840—844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also

mincx | gevp | dec2mat
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fitfrd

Fit frequency response data with state-space model

Syntax

B = fitfrd(A,N)
B = fitfrd(A,N,RD)

B = fitfrd(A,N,RD,WT)
Description

B = fitfrd(A,N) is a state-space object with state dimension N, where A is an frd
object and NV is a nonnegative integer. The frequency response of B closely matches the D-
scale frequency response data in A.

A must have either 1 row or 1 column, although it need not be 1-by-1. B will be the same
size as A. In all cases, N should be a nonnegative scalar.

B = Fitfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a nonnegative
integer. The default value for RD is 0. If A is a row (or column) then RD can be a vector of
the same size as well, specifying the relative degree of each entry of B. If RD is a scalar,
then it specifies the relative degree for all entries of B. You can specify the default value
for RD by setting RD to an empty matrix.

B = Ffitfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit
criteria. WT can be a double, ssor frd. If WT is a scalar, then it is used to weight all
entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and

each individual entry of WT acts as a weighting function on the corresponding entry of (A-
B).

Examples

Fit D-scale Data

Use the Fitfrd command to fit D-scale data.



fitfrd

FPhase (deq)

Magnitude {dB)

Create D-scale frequency response data from a fifth-order system.

sys =
sys =
omeg
sysg

tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);
sys*tf([1 3.75 3.5],[1 2.5 13]);
logspace(-1,1);

frd(sys,omeg);

bode(sysg, "r-");

10

Bode Diagram

120k
107"

10°
Frequency (rad/s)

10

You can try to fit the frequency response D-scale data sysg with a first-order system, b1l.

Similarly, you can fit the D-scale data with a third-order system, b3.

bl
b3

fitfrd(sysg,1);
fitfrd(sysg,3);
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Compare the original D-scale data sysg with the frequency responses of the first and
third-order models calculated by Fitfrd.

blg = frd(bl,omeqg);

b3g = frd(b3,omeqg);

bode(sysg, "r-",blg, "k:",b3g, "b-_.%)

legend("5th order system®,"1st order fit","3rd order fit","Location”, "Southwest®)

Bode Diagram

10 T T — T
[
g \
e E B =
a )
aor —
=
-20 : : —
0F T T — T
] "'-1-,_, ""-.____“_ :-F.:'-:":..
o a0 - 5th order system
f R e 1st order fit
————— 3rd order fit
-135 & . . R — . . e
10 10¢ 10
Frequency (rad/s)
Limitations

Numerical conditioning problems arise if the state order of the fit N is selected to be
higher than required by the dynamics of A.
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See Also
Ffitmagfrd
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fitmagfrd

Fit frequency response magnitude data with minimum-phase state-space model using
log-Chebyshev magnitude design

Syntax

B = fitmagfrd(A,N)

B = fitmagfrd(A,N,RD)

B = fitmagfrd(A,N,RD,WT)

B = fitmagfrd(A,N,RD,WT,C)
Description

B = Fitmagfrd(A,N) is a stable, minimum-phase Ss object, with state-dimension N,
whose frequency response magnitude closely matches the magnitude datain A. Ais a 1-
by-1 frd object, and N is a nonnegative integer.

B = Fitmagfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a
nonnegative integer whose default value is 0. You can specify the default value for RD by
setting RD to an empty matrix.

B = Ffitmagfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit
criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all
entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and
each individual entry of WT acts as a weighting function on the corresponding entry of (A-
B). The default value for WT is 1, and you can specify it by setting WT to an empty matrix.

B = fitmagfrd(A,N,RD,WT,C) enforces additional magnitude constraints on B,
specified by the values of C.LowerBound and C.UpperBound. These can be empty,
double or frd (with C.Frequency equal to A.Frequency). If C.LowerBound is non-
empty, then the magnitude of B is constrained to lie above C.LowerBound. No lower
bound is enforced at frequencies where C.LowerBound is equal to -inf. Similarly, the
UpperBound field can be used to specify an upper bound on the magnitude of B. If C is a
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double or frd (with C.Frequency equal to A.Frequency), then the upper and lower
bound constraints on B are taken directly from A as:

if C(w) == —1, then enforce abs(B(w)) <= abs(A(w))
if C(w) == 1, then enforce abs(B(w)) >= abs(A(w))

if C(w) == 0, then no additional constraint

where w denotes the frequency.

Examples

Fit Frequency Response Data With Stable Minimum-Phase State-Space Model

Create frequency response magnitude data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.-1]);
sys sys*tf([1 3.75 3.5],[1 2.5 13]);
omega = logspace(-1,1);

sysg = abs(frd(sys,omega));

bodemag(sysg, "r°);
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Bode Diagram
10 - ——

=
T
1

Magnitude {dB)
é)

-20 : ——
10" 1" 10!
Frequency (rad/s)

Fit the magnitude data with a minimum-phase, stable third-order system.

ord = 3;

bl = fitmagfrd(sysg,ord);

blg = frd(bl,omega);
bodemag(sysg, "r-,blg, "k:");
legend("Data”, "3rd order fit");
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Magnitude {dB)

Bode Diagram

10 T T L T
Data
3rd order fit
0
-10
-15
-20 : : —

101 10° 10"
Frequency (rad/s)

Fit the magnitude data with a third-order system constrained to lie below and above the
given data.

C2_UpperBound = sysg;

C2.LowerBound = [];

b2 = fitmagfrd(sysg,ord,[].,[1,.C2);

b2g = frd(b2,omega);

C3.UpperBound = [];

C3.LowerBound = sysg;

b3 = fitmagfrd(sysg,ord,[]1.[]1,.C3);

b3g = frd(b3,omega);

bodemag(sysg, "r-,blg, "k:",b2g,"b-_",b3g, "m--")

legend("Data”, "3rd order fit","3rd order fit, below data“, ...
"3rd order fit, above data®)
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Bode Diagram
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Frequency (rad/s)

Fit the magnitude data with a second-order system constrained to lie below and above
the given data.

ord = 2;

C2_UpperBound = sysg;

C2.LowerBound = [];

b2 = fitmagfrd(sysg,ord,[],sysg,C2);
b2g = frd(b2,omega);

C3.UpperBound = [];

C3.LowerBound = sysg;

b3 = fitmagfrd(sysg,ord,[],sysg,C3);
b3g frd(b3,omega);

bgp fitfrd(genphase(sysg),ord);
bgpg = frd(bgp,omega);
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Magnitude {dB)

bodemag(sysg, "r",blg, "k:",b2g, "b-.",b3g, "m--",bgpg, "r--")

legend("Data”, "3rd order fit","2d order fit, below data“, ...

*2nd order fit, above data“, “"bgpg")

Bode Diagram

10 ; —— .
Data
.......... 3rd Drderﬁt
5. ™. == 2d order fit, below data | |
— — — Znd order fit, sbove data
— — — bgpg
D —
-/ _— _ -
0 o~ .x//
""‘Ht._f:.-'"
151
-20 : S — :
107" 10° 107
Frequency (rad/s)
Limitations

This input Frd object must be either a scalar 1-by-1 object or, a row, or column vector.
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More About

Algorithms
fitmagfrd uses a version of log-Chebyshev magnitude design, solving

min £ subject to (at every frequency point in A):
|[d]~2 7(1+ F/WT) < n]|"2/AN2 < [d|™2*(Q + £/WT)

plus additional constraints imposed with C. n, d denote the numerator and
denominator, respectively, and B = n/d. n and d have orders (N-RD) and N, respectively.
The problem is solved using linear programming for fixed ¥ and bisection to minimize F.
An alternate approximate method, which cannot enforce the constraints defined by C, is B
= Fitfrd(genphase(A),N,RD,WT).

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New
Jersey, 1975, p. 513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

See Also
Fitfrd
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gainsurf

Create tunable gain surface for gain scheduling

gainsurf lets you express gain in terms of tunable parameters for tuning gain-
scheduled controllers.

In gain-scheduled controllers, each controller gain, K(0), is a function of the scheduling
variables, 0. For tuning purposes, it is convenient to parameterize K(o) as a smooth gain
surface of the form:

K(0)=Ky+K F (0)+...+ Ky Fyr (0).

Fi(0),...,Fy(0) are user-selected basis functions. Kj,...,Kjs are the coefficients to be tuned.
You can use terms in a generic polynomial expansion as basis functions. Or, when

you have a priori knowledge of the expected shape of K(0), you can use more specific
functions. You can then use systune, to tune the coefficients K,,...,K;, subject to your
design requirements.

Syntax

K = gainsurf(name,KOinit,Fl,...,FM)

Description

K = gainsurf(name,KOinit,F1,...,FM) constructs a tunable model of the gain
surface K(0)=Ky + K F, (0)+...+ Ky Fy; (0), sampled at a discrete set of 0 values

(the design points). The arrays F1,...,FM contain the values of the basis functions
F1(0),...,Fy(0) at those design points. The gain surface model, K, depends on the tunable
coefficients K,..., K. You can combine K with other static or dynamic elements to
construct a closed-loop model of your gain-scheduled control system. Then, use systune
to tune K,...,Kjs so that the closed-loop system meets your design requirements at the
selected design points.
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Examples

Tunable Gain With One Scheduling Variable

Create a scalar gain K that varies as a quadratic function of a single scheduling variable,
i

K(t) = Ky + Kt + Kot*.

This gain surface can represent a gain that varies with time. The coefficients Ky, K1, and
K are the tunable parameters of this time-varying gain.

To represent the tunable gain surface K(t) in MATLAB®, first choose a vector of ¢ values
in the range of interest for your problem. Then, obtain the values of each basis function
in the expansion of K(¢), at those ¢t values. For this example, suppose that ¢ varies from 0

to 40.

t = 0:5:40;
F1 = t;

F2 = t.72;

Create a tunable model of the gain surface K(¢), sampled at the ¢ values.

K = gainsurf("K",1,F1,F2)

1x9 array of generalized matrices with 1 rows, 1 columns, and the following blocks:
K_0: Scalar parameter, 1 occurrences.
K_1: Scalar parameter, 1 occurrences.
K_2: Scalar parameter, 1 occurrences.

Type "double(K)'"™ to see the current value, "get(K)"™ to see all properties, and "K.Blocl

K is an array of generalized matrices. Each element in K describes K(t) for a particular
value of ¢, and depends on the tunable coefficients K_0, K_1, and K_2. For example, the

first element, K(:, :,1), is K(0)=Ky+ K %04+ K% 0? = Ko, The second element,

K(:,:,2),is K(5) = Ko+ Ki#5+ K2%5% 404 50 on.
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Associate the independent variable values with the corresponding values of K.
K.SamplingGrid = struct("time",t);

The SamplingGrid property keeps track of the scheduling variable values associated
with each entry in K. This association is convenient for tracing results back to
independent variable values. For instance, you can use view(K) to inspect the tuned
values of the gain surface after tuning. When you do so, view takes the axis range and
labels from the entries in SamplingGrid. For this example, instead of tuning, manually
set the values of the tunable blocks to non-zero values. View the resulting gain as a
function of time.

values = struct("K 0",1,"K 17,-1,"K 27,0.1);
view(setBlockValue(K,values))

140 T T T T T T T

120

100

40

1 -

1] 5 10 15 20 25 30 35 40
time
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You can use K as a tunable gain to design a gain-scheduled controller. Use systune to
tune the coefficients 0, 1, and K2 at the sample times ¢ = 0,5,...,40.

Tunable Gain With Two Independent Scheduling Variables

This example shows how to model a scalar gain K with a bilinear dependence on two
scheduling variables, @ and V, as follows:

Ko, V) =Ky+ Ko+ KV 4+ Kyal.

For this example, @ is an angle of incidence that ranges from 0 to 15 degrees, and V

is a speed that ranges from 300 to 600 m/s. The coefficients K. .... K3 are the tunable
parameters of this variable gain.

Create a grid of design points, (ex, 1"}, that are linearly spaced in & and V. These design
points are where you will tune the gain surface coefficients.

[alpha,V] = ndgrid(0:5:15,300:100:600);

These arrays, alpha and V, represent the independent variation of the two scheduling
variables, each across its full range.

When you tune the gain surface coefficients with systune, you might obtain better
solver performance by normalizing the scheduling variables to fall within the interval
[-1,1]. Scale the o and V grid to fall within this range.

alphaN = alpha/15;
VN = (V-450)/150;

Create the tunable gain surface sampled at the grid of [~ V) values:
Koy, Vv) = Kp+ Kiay + KoV + Kaan V.

In this expansion, the basis functions are:

Filax,Vy) = ay
Folap, V)= Vy
Folay, Vvl = ayVy.
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Specify the values of the basis functions over the [~ Vi),

F1 = alphaN;

F2 = VN;

F3 = alphaN.*VN;

K = gainsurf("K*,1,F1,F2,F3)

4x4 array of generalized matrices with 1 rows, 1 columns, and the following blocks:
K_0: Scalar parameter, 1 occurrences.
K_1: Scalar parameter, 1 occurrences.
K_2: Scalar parameter, 1 occurrences.
K_3: Scalar parameter, 1 occurrences.

Type "double(K)'"™ to see the current value, "get(K)"™ to see all properties, and "K.Blocl

K is an array of generalized matrices. Each element in K corresponds to K{an.Vv) for a

particular (2N V) pair, and depends on the tunable coefficients K_O,...,| K_3].

Associate the independent variable values with the corresponding values of K.
K.SamplingGrid = struct(“alpha®,alpha,”V",V);

The Sampl ingGrid property keeps track of the scheduling variable values associated
with each entry in K. This association is convenient for tracing results back to
independent variable values. For instance, you can use view(K) to inspect the tuned
values of the gain surface after tuning. When you do so, view takes the axis range and
labels from the entries in SamplingGrid. For this example, instead of tuning, manually
set the values of the tunable blocks to non-zero values. View the resulting gain surface as
a function of the scheduling variables.

values = struct("K 0",1,"K 1°,-1,"K 2",0.1,"K 3",-0.2);

Ktuned = setBlockVvValue(K,values);
view(Ktuned)
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The variable names and values that you specified in the SamplingGrid property are
used to scale and label the axes.

You can use K as a tunable gain to build a control system with gain-scheduled tunable
components. For example, use K to create a gain-scheduled low-pass filter.

F = tf(K,[1 KD):;

You can use gain surfaces as arguments to model creation commands like tF the same
way you would use numeric arguments. The resulting filter is a generalized state-space
(genss) model array that depends on the four coefficients of the gain surface.

Use model interconnection commands (such as connect and feedback) to combine
F with an array of plant models sampled at the same values of & and V. You can then
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use systune to tune the gain-scheduled controller to meet your design requirements.
Because you normalized the scheduling variables to model the tunable gain, you must
adjust the coefficient values in the implementation of your tuned controller.

Gain Surface Over Nonregular Grid

Create a gain surface sampled at scheduling variable values that do not form a regular
grid in the operating domain. The gain surface varies as a bilinear function of variables o

and

Kla, @)= Kp + Koo + K28 + K.

Suppose that the values of interest of the scheduling variables are the following (e, B)
pairs.

( (—0.9,0.05)
(—1.5,0.6)
(—1.5,0.95)
(—2.5,0.5)
(—3.2,0.7)
(—3.9,0.3)

n

Specify the (cx, B) sample values as vectors.

alpha = [-0.9;-1.5;-
0.0 ;0.

1.5;-2.5;-3.2;-3.9];
beta = [0.05;0. 95;0.

5;0.7;0.3];

Instead of a regular grid of (e, 3) values, here the gain surface is sampled at irregularly

spaced points on (ax, "j'}-space.

plot(alpha,beta,"0")
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0
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The basis functions of the expansion of I\ are:

- Fi=a
- B=43
e Fy=np

Evaluate the basis functions at each of the sample points.

F1 = alpha;
F2 = beta;
F3 = alpha.*beta;

Create the tunable model of the gain surface using these sampled function values.
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-~
1l

gainsurf("K",1,F1,F2,F3)

6x1 array of generalized matrices with 1 rows, 1 columns, and the following blocks:
K_0: Scalar parameter, 1 occurrences.
K_1: Scalar parameter, 1 occurrences.
K_2: Scalar parameter, 1 occurrences.
K_3: Scalar parameter, 1 occurrences.

Type "double(K)'" to see the current value, "get(K)" to see all properties, and "K.Blocl

The gain surface is represented by a 6-by-1 array of generalized matrices. Because K is
a scalar gain, each element in the array is 1-by-1. Each element in the array represents

Ko, ) for the corresponding (o, 3) sample. Each of these elements depends on the
tunable parameters K_0,...,K 3.

Use the SamplingGrid property to associate the o and 1 values with the corresponding
entries in K.

SG = struct(“alpha®,alpha, "beta”,beta);
K.SamplingGrid = SG;

. “Gain-Scheduled PID Controller”

. “Tuning of Gain-Scheduled Three-Loop Autopilot”
. Gain Scheduled Control Of a Chemical Reactor

Input Arguments

name — Identifying label for the tunable gain
string

Identifying label for the tunable gain surface, specified as a string. The tunable
coefficients of the gain surface are assigned names based on this identifying label. For
example, suppose you create a gain surface using the name Kp. The tunable coefficients
are realp blocks in the resulting genmat. These blocks have names Kp_0, Kp_1,...,.Kp_M.

Additionally, you can use this label to refer to the gain surface. For example, you can
extract tuned coefficient values from a control system model, M, that depends on the gain
surface using [KO,K1,...,KM] = gainsurfdata(M, "Kname™).

2-101


../examples/gain-scheduled-control-of-a-chemical-reactor.html

2 Alphabetical List

2-102

KOinit — Initial value of Ko
scalar | array

Initial value of the tunable coefficient Ky, specified as a scalar or an array. The
dimensions of KOinit determine the I/O dimensions of the gain surface. For example,

if the gain surface represents a two-input, two-output gain, you can set KOinit =
zeros(2). Doing so automatically sets the I/O dimensions of the other terms in the gain
surface.

K(o)

K3
KOII K012

K
K‘)zl Kozz !

Ky

F1,...,FM — Values of the basis functions at sample values of scheduling variables
numeric arrays

Function values describing the dependence of the gain surface on the scheduling
variables, specified as numeric arrays. Each Fj(0) in the expansion of the gain surface

is a scalar-valued function. The corresponding input argument, FJ, is a numeric array
containing the values of Fj(0) at the corresponding scheduling variable values. For
instance, in the following illustration, Fj(o) is a function of two scheduling variables. The
corresponding matrix FJ contains the values of Fj(0) sampled over a 2-D grid of (01,02)
values.
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FJ

To construct the arguments F1,...,FM when your sampling grid is regular, evaluate
each Fj(o) over that grid. For example, consider a gain that depends on two scheduling
variables, a and f:

For this gain, F'; = af, Fs = a, and F5 = (5. To create the input argument F1, you first
create a grid of a and S values that spans the operating range of these variables. Then,
you compute the values of F; over that grid.

[alpha,beta] = ndgrid(0:1:10,50:5:100);
F1 = alpha.*beta;

You can improve performance of the tuning algorithm by specifying the function values
in terms of normalized scheduling variables that fall in the range [-1,1]. To do this,
subtract the mean value from each variable grid and divide by the variable’s half-range.
For example:

alphaN = (alpha-5)/5;

betaN = (beta-75)/25;
F1 = alphaN.*betaN;

In this example the values of ¢ and f are regularly spaced. However, regular grid spacing
is not required. Suppose your sampling values are arbitrary (a,f) pairs. In this case, a

2-103



2 Alphabetical List

2-104

and f are specified as vectors, where (a(i),5(i) represents one sample point. Each Fj is also
a vector:

F;=[F; (04, B),Fj (9, B2) -, Fj (. By ) |

For an example, see “Gain Surface Over Nonregular Grid” on page 2-99.

Output Arguments

K — Tunable gain surface
generalized matrix

Tunable gain surface, returned as an array of generalized matrices (genmat).

The dimensions of each generalized matrix in the array (the I/O dimensions of the gain
surface) are determined by the dimensions of KOinit. The dimensions of the array itself
are determined by the sampling grid used to specify the basis functions. Thus, each entry
in the array represents the gain at the corresponding scheduling variable value.

The gain surface depends on the tunable coefficients KO, . . . ,KM. Each coefficient is
modeled as a realp block of the same size as K. For instance, if the gain surface models a
scalar gain, then each coefficient is a scalar realp block. If the gain surface models a 2-
by-3 gain matrix, then each coefficient is a 2-by-3 realp block.

More About

. “Gain-Scheduled Control Systems”

. “Parametric Gain Surfaces”

See Also

Functions
gainsurfdata | genmat | ndgrid | systune | view (genmat)
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gainsurfdata

Get values of gain surface coefficients

Syntax

[KO,K1,...,KM]
[KO,K1, ... ,KM]

gainsurfdata(k)
gainsurfdata(M,Kname)

Description

[KO,K1,...,KM] = gainsurfdata(K) returns the current values of the coefficients of
a gain surface, K. K is of the form:

K(o)=Ky+K F (0)+...+ Ky Fy; (0).

Typically, you create K using gainsurt.

[KO,K1,...,KM] = gainsurfdata(M,Kname) returns the coefficients of a gain
surface having name Kname that is incorporated into a control system model, M. You can
use this syntax to extract tuned coefficient values after using systune to tune M.

Examples

Get Current Values of Gain Surface Coefficients

Extract the current coefficient values from a tunable gain surface
K =HKy+ Kia+ f‘(grr?'

For this example, create a tunable gain surface and extract the initial values of its
coefficients. Generally, gainsurfdata is useful for extracting tuned coefficient values
after control system tuning with systune.

Create the tunable gain surface.

alpha = 0:10:100;
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F1 = alpha;

F2 = alpha.”2;

K = gainsurf("K",1,F1,F2)
K =

1x11 array of generalized matrices with 1 rows, 1 columns, and the following blocks:
K_0: Scalar parameter, 1 occurrences.
K_1: Scalar parameter, 1 occurrences.
K_2: Scalar parameter, 1 occurrences.

Type "double(K)"™ to see the current value, "get(K)'" to see all properties, and "K.Blocl

K is a generalized matrix (genmat) with tunable coefficients K 0, K_1, K 2.

Extract the current values of the tunable coefficients.

[KO,K1,K2] = gainsurfdata(K)

KO =
1
K1 =
0
K2 =
0

You specify the initial value of K_0 with the KOinit input argument to gainsurf. The
output of gainsurfdata shows that gainsurf automatically assigns initial values of 0
to the remaining coefficients.

Get Coefficient Values from Control System Model

Extract current coefficient values from a generalized model of a control system that
depends on a tunable gain surface.
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For this example, create a control system model and extract the initial values of its
coefficients. Generally, gainsurfdata is useful for extracting tuned coefficient values
after control system tuning with systune.

Create an array of plant models in which each plant is sampled at a different value of a
scheduling parameter, alpha.

alpha = (0:10:100)";

G = zpk(zeros(1,1,11));

for i1 = 1:11

G(:z,:,i1) = zpk([1,-1+0.01*alpha(ii),1);
end

Create a tunable PI controller with gains that depend the same scheduling parameter.

F1 = alpha;

F2 = alpha.”2;

Kp = gainsurf("Kp®,1,F1,F2);
Ki = gainsurf("Ki",0.1,F1,F2);

C = pid(Kp,Ki);

Combine the plant model with the tunable controller to build a closed-loop control system
model array.

M = feedback(G*C,1)

11x1 array of generalized continuous-time state-space models.

Each model has 1 outputs, 1 inputs, 2 states, and the following blocks:
Ki_0O: Scalar parameter, 1 occurrences.
Ki_1: Scalar parameter, 1 occurrences.
Ki_2: Scalar parameter, 1 occurrences.
Kp_0: Scalar parameter, 1 occurrences.
Kp_1: Scalar parameter, 1 occurrences.
Kp_2: Scalar parameter, 1 occurrences.

Type "ss(M)" to see the current value, "get(M)" to see all properties, and "M.Blocks"
This array of tunable closed-loop models, M, depends on the coefficients that parametrize
the PI gains in terms of the scheduling variable, alpha.

Extract the initial values of the tunable coefficients.
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[KpO,Kpl,Kp2]
[KiO,Kil,Ki2]

gainsurfdata(M, "Kp");
gainsurfdata(M, "Ki");

M depends on the gain surfaces that are assigned the names Kp and Ki. Therefore,
gainsurfdata finds and returns the initial values of the coefficients associated with
those gain surfaces.

Similarly, use gainsurfdata to extract the tuned values of the coefficients after using
systune to tune M against a set of design requirements.

. “Tuning of Gain-Scheduled Three-Loop Autopilot”

Input Arguments

K — Gain surface
gain surface (genmat array created with gainsurf)

Gain surface from which to extract coefficients, specified as a generalized matrix
(genmat) array created using gainsurf,

M — Control system model
generalized state-space model (genss) | genss model array

Control system model from which to extract tunable coefficients, specified as a genss
model or array of genss models. M must depend on a gain surface that has the name
Kname. Typically, you create that gain surface using gainsurf, incorporate it into M,
and tune the coefficients with systune. Then you can use gainsurfdata(M,Kname) to
extract the tuned values of the coefficients associated with that gain surface.

Kname — Name of gain surface
string

Name of a gain surface that the control system model M depends on, specified as a
string. The value of this string is the Name property of a genmat that represents a gain
surface. For example, suppose you create a tunable gain surface, Kc, and combine it with
a numeric LTI model array, sysarr:

ainsurf("Kec",1,F1,F2,F3);

K=g
M feedback(sysarr*K,1);

Mis an array of tunable control system models that depend on the gain surface. The
following code extracts the values of the coefficients associated with this gain surface.



gainsurfdata

[KcO0,Kecl,Ke2,Ke3] = gainsurfdata(M, "Kc");

Output Arguments

KO,K1, ... ,KM — Current values of tunable coefficients
numeric scalar | numeric array

Current values of the tunable coefficients of the gain surface, returned as numeric
values. The gain surface K or Kname has the form:

K(o)=Ky+K F (0)+...+ Ky Fy; (0).

+ If the gain surface represents a scalar gain, then the current values are scalars.

+ If the gain surface represents a MIMO gain, then the current values are arrays of the
same dimensions as the I/O dimensions of the gain surface.

More About

. “Gain-Scheduled Control Systems”

. “Parametric Gain Surfaces”

See Also

Functions
gainsurf | genmat | genss | systune
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gapmetric

Compute upper bounds on Vinnicombe gap and hugap distances between two systems

Syntax

[gap,nugap] = gapmetric(pO0,pl)

[gap,nugap] = gapmetric(pO,pl,tol)

Description

[gap,nugap] = gapmetric(p0,pl) calculates upper bounds on the gap and nugap
(Vinnicombe) metric between systems pO and pl. The gap and nugap values lie between
0 and 1. A small value (relative to 1) implies that any controller that stabilizes pO will
likely stabilize p1, and, moreover, that the closed-loop gains of the two closed-loop
systems will be similar. A gap or hugap of 0 implies that pO equals p1, and a value of

1 implies that the plants are far apart. The input and output dimensions of pO and pl
must be the same.

[gap,nugap] = gapmetric(p0,pl,tol) specifies a relative accuracy for calculating
the gap metric and nugap metric. The default value for tol is 0.001. The computed
answers are guaranteed to satisfy

gap-tol < gapexact(pO,pl) <= gap

Examples

Compute gap and nugap Metrics for Stable and Unstable Plant Models

Create two plant models. One plant is unstable, first-order, with transfer function 1/( s
-0.001). The other plant is stable and first-order with transfer function 1/( s +0.001).

tf(1,[1 -0.001]);
tf(1,[1 0.001]);

pl
p2



gapmetric

Despite the fact that one plant is unstable and the other is stable, these plants are close

in the gap and nugap metrics.

[9.ng] = gapmetric(pl,p2)

g:

0.0029

0.0020

Intuitively, this result is obvious, because, for instance, the feedback controller K
stabilizes both plants and renders the closed-loop systems nearly identical.

K=1;

H1 = loopsens(pl,K);

H2 = loopsens(p2,K);

subplot(2,2,1); bode(H1.Si,"-",H2.Si,"--");
subplot(2,2,2); bode(H1.Ti, =" ,H2.Ti, "--");
subplot(2,2,3); bode(H1.PSi,"-",H2_PSi,"—-");
subplot(2,2,4); bode(H1.CSo,"-",H2.CS0, " --");

=1
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Bode Diagram Bode Diagram
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Next, consider two stable plant models that differ by a first-order system. One plant is
the transfer function 50/( s +50) and the other plant is the transfer function 50/( s +50) *
8/( s +8).

p3
p4

tf([50].[1 501);
tf([8].[1 81)*p3;

Although the two systems have similar high-frequency dynamics and the same unity
gain at low frequency, the plants are modestly far apart in the gap and nugap metrics.

[9.ng] = gapmetric(p3,p4)

g:
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0.6156

ng =

0.6147

More About

Algorithms

gap and nugap compute the gap and v gap metrics between two LTI objects. Both
quantities give a numerical value 8(p0,pl) between 0 and 1 for the distance between a
nominal system pO (Gy) and a perturbed system p1 (G;). The gap metric was introduced
into the control literature by Zames and El-Sakkary 1980, and exploited by Georgiou
and Smith 1990. The v gap metric was derived by Vinnicombe 1993. For both of these
metrics the following robust performance result holds from Qui and Davidson 1992, and
Vinnicombe 1993

arcsin b(G1,K,) > arcsin b(Gy,Ky) — arcsin 6(Gy,G1) — arcsin 6(Ky,K;)
where

-1
b(G,K) = H%E{I ~GK)[G 1]

00

The interpretation of this result is that if a nominal plant Gy is stabilized by controller
Ky, with “stability margin” b(Gg,K)), then the stability margin when Gy is perturbed to
G, and K, is perturbed to K; is degraded by no more than the above formula. Note that
1/6(G,K) is also the signal gain from disturbances on the plant input and output to the
input and output of the controller. The v gap is always less than or equal to the gap, so
its predictions using the above robustness result are tighter.

To make use of the gap metrics in robust design, weighting functions need to be
introduced. In the above robustness result, G needs to be replaced by WoGW; and K

by Wl_lKWz_l (similarly for Gy, G1, Ky and K;). This makes the weighting functions
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compatible with the weighting structure in the H,, loop shaping control design procedure
(see loopsyn and ncfsyn for more details).

The computation of the gap amounts to solving 2-block H,, problems (Georgiou, Smith
1988). The particular method used here for solving the H,, problems is based on Green et
al., 1990. The computation of the nugap uses the method of Vinnicombe, 1993.

References

Georgiou, T.T., “On the computation of the gap metric, ” Systems Control Letters, Vol. 11,
1988, p. 253-257

Georgiou, T.T., and M. Smith, “Optimal robustness in the gap metric,” IEEE
Transactions on Automatic Control, Vol. 35, 1990, p. 673-686

Green, M., K. Glover, D. Limebeer, and J.C. Doyle, “A J-spectral factorization approach
to H, control,” SIAM J. of Control and Opt., 28(6), 1990, p. 1350-1371

Qiu, L., and E.J. Davison, “Feedback stability under simultaneous gap metric
uncertainties in plant and controller,” Systems Control Letters, Vol. 18-1, 1992 p. 9-22

Vinnicombe, G., “Measuring Robustness of Feedback Systems,” PhD Dissertation,
Department of Engineering, University of Cambridge, 1993.

Zames, G., and El-Sakkary, “Unstable systems and feedback: The gap metric,”
Proceedings of the Allerton Conference, October 1980, p. 380-385

See Also

loopsyn | wesens | ncfsyn | robuststab | wemargin
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genphase

Fit single-input/single-output magnitude data with real, rational, minimum-phase
transfer function

Syntax

resp = genphase(d)

Description
genphase uses the complex-cepstrum algorithm to generate a complex frequency
response resp whose magnitude is equal to the real, positive response d, but whose

phase corresponds to a stable, minimum-phase function. The input, d, and output, resp,
are Frd objects.

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New
Jersey, 1975, p. 513.

See Also
Ffitfrd | fitmagfrd
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getlmis

Internal description of LMI system

Syntax

Imisys = getlmis

Description

After completing the description of a given LMI system with Imivar and Imiterm, its
internal representation Imisys is obtained with the command

Imisys = getlmis

This MATLAB representation of the LMI system can be forwarded to the LMI solvers or
any other LMI-Lab function for subsequent processing.

See Also

setImis | newlmi | Imivar | Imiterm
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gevp

Generalized eigenvalue minimization under LMI constraints

Syntax

[lopt,xopt] = gevp(Imisys,nlfc,options, linit,xinit,target)

Description
gevp solves the generalized eigenvalue minimization problem of minimizing A, subject to:

C(x) < D(x)
0 < B(x)
A(x) < AB(x)

where C(x) < D(x) and A(x) < AB(x) denote systems of LMIs. Provided that Equation 2-7
and Equation 2-8 are jointly feasible, gevp returns the global minimum lopt and the
minimizing value xopt of the vector of decision variables x. The corresponding optimal
values of the matrix variables are obtained with dec2mat.

The argument Imisys describes the system of LMIs Equation 2-7 to Equation 2-9

for A = 1. The LMIs involving A are called the linear-fractional constraints while
Equation 2-7 and Equation 2-8 are regular LMI constraints. The number of linear-
fractional constraints Equation 2-9 is specified by nlfc. All other input arguments are
optional. If an initial feasible pair (A, xo) 1s available, it can be passed to gevp by setting
linitto )y and Xinit to xy. Note that xinit should be of length decnbr(Imisys) (the
number of decision variables). The initial point is ignored when infeasible. Finally, the
last argument target sets some target value for A. The code terminates as soon as it has
found a feasible pair (, x) with A < target.

Caution

When setting up your gevp problem, be cautious to
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+ Always specify the linear-fractional constraints Equation 2-9 last in the LMI system.
gevp systematically assumes that the last nlfc LMI constraints are linear fractional.

+ Add the constraint B(x) > 0 or any other LMI constraint that enforces it (see Remark
below). This positivity constraint is required for regularity and good formulation of
the optimization problem.

Control Parameters

The optional argument options lets you access control parameters of the optimization
code. In gevp, this is a five-entry vector organized as follows:

+ options(1) sets the desired relative accuracy on the optimal value lopt (default =
1079).

+ options(2) sets the maximum number of iterations allowed to be performed by the
optimization procedure (100 by default).

+ options(3) sets the feasibility radius. Its purpose and usage are the same as for
feasp.

+ options(4) helps speed up termination. If set to an integer value J > 0, the code
terminates when the progress in A over the last J iterations falls below the desired
relative accuracy. Progress means the amount by which A decreases. The default
value is 5 iterations.

+ options(5) = 1 turns off the trace of execution of the optimization procedure.
Resetting options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter
to its default value.

Examples
Given
-1 20 +0.8 150 +14 0.9 0
Al=pg _0A2=( o ,0A43=0 o a0
Ol -30 01.3 -2.70 00.7 -2.0

consider the problem of finding a single Lyapunov function V(x) = x”Px that proves
stability of



gevp

X :Aix = 1,2,3)

and maximizes the decay rate

a subject to

I<P

ATP+PA <aP
ATP+PA, <aP

ATP+PA; <aP

dV(x)
dt

. This is equivalent to minimizing

To set up this problem for gevp, first specify the LMIs Equation 2-11 to

Equation 2-13with a = 1:

setinmis([1):;
p = Imivar(1,[2 1)

Imiterm([2 1 1 0],1) % P > 1
Imiterm([-1 1 1 p]1,1,1) % P >
Imiterm([2 1 1 p],1,al1,"s™) %
Imiterm([-2 1 1 p].1.1) % LFC
Imiterm([3 1 1 p],1,a2,"s™) %
Imiterm([-3 1 1 p],1,1) % LFC
Imiterm([4 1 1 p],1,a3,"s™) %
Imiterm([-4 1 1 p].1.,1) % LFC
Imis = getlmis

Note that the linear fractional constraints are defined last as required. To minimize a

1

1 :P

LFC # 1 (lhs)
# 1 (rhs)

LFC # 2 (lhs)
# 2 (rhs)

LFC # 3 (lhs)
# 3 (rhs)

subject to Equation 2-11 to Equation 2-13, call gevp by

[alpha,popt]=gevp(Imis,3)

This returns alpha = -0.122 as the optimal value (the largest decay rate is therefore

0.122). This value is achieved for:
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0558 -835LC
“Hs.35 1864F

More About
Tips

Generalized eigenvalue minimization problems involve standard LMI constraints
Equation 2-7 and linear fractional constraints Equation 2-9. For well-posedness, the
positive definiteness of B(x) must be enforced by adding the constraint B(x) > 0 to the
problem. Although this could be done automatically from inside the code, this is not
desirable for efficiency reasons. For instance, the set of constraints Equation 2-8 may
reduce to a single constraint as in the example above. In this case, the single extra LMI
“P> I”1s enough to enforce positivity of all linear-fractional right sides. It is therefore
left to the user to devise the least costly way of enforcing this positivity requirement.

References

The solver gevp is based on Nesterov and Nemirovski's Projective Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications, STAM, Philadelphia, 1994.

The optimization is performed by the C MEX-file fpds.mex.

See Also

dec2mat | decnbr | feasp | mincx
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gridureal

Grid ureal parameters uniformly over their range

Syntax

B = gridureal(A,N)

[B,SampleValues] = gridureal(A,N)

[B,SampleValues] = gridureal (A,NAMES,N)
[B,SampleValues] = gridureal (A,NAMES1,N1,NAMES2,N2,...)

Description

B = gridureal (A,N) substitutes N uniformly-spaced samples of the uncertain real
parameters in A. The samples are chosen to cut “diagonally” across the cube of real
parameter uncertainty space. The array B has size equal to [size(A) N]. For example,
suppose A has 3 uncertain real parameters, say X, Y and Z. Let (x1, x2 , , and xN)
denote N uniform samples of X across its range. Similar for Y and Z. Then sample A at the
points (x1, y1, zl), (X2, y2, z2),and (XN, yN, zN) to obtain the result B.

If A depends on additional uncertain objects, then B will be an uncertain object.

[B,SampleValues] = gridureal (A,N) additionally returns the specific sampled
values (as a structure whose fieldnames are the names of A"s uncertain elements) of
the uncertain reals. Hence, B is the same as usubs(A, SampleValues).

[B,SampleValues] = gridureal (A,NAMES,N) samples only the uncertain
reals listed in the NAMES variable (cell, or char array). Any entries of NAMES
that are not elements of A are simply ignored. Note that gridureal (A,
fieldnames(A.Uncertainty),N) is the same as gridureal (A,N).

[B,SampleValues] = gridureal (A,NAMES1,N1,NAMES2,N2,...) takes N1
samples of the uncertain real parameters listed in NAMES1, and N2 samples of the
uncertain real parameters listed in NAMES2 and so on. size(B) will equal [size(A) N1
N2 L.l
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Examples

Grid Open-Loop and Closed-Loop Responses of Uncertain System

Create two uncertain real parameters gamma and tau. The nominal value of gamma is 4
and its range is 3 to 5. The nominal value of tau is 0.5 and its value can vary by +/- 30
percent.

gamma = ureal("gamma“”,4);
tau = ureal("tau”, .5, "Percentage”,30);

These uncertain parameters are used to construct an uncertain transfer function p. An
integral controller, c, is synthesized for the plant p based on the nominal values of gamma
and tau. The uncertain closed-loop system clp is formed.

p = tf(gamma,[tau 1]);

Kl = 1/(2*tau.Nominal*gamma.Nominal);
c = tf(KI1,[1 0D);

clp = feedback(p*c,1);

The figure below shows the open-loop unit step response (top plot) and closed-loop
response (bottom plot) for a grid of 20 values of gamma and tau.

subplot(2,1,1); step(gridureal(p,20),6)
title("Open-loop plant step responses®)
subplot(2,1,2); step(gridureal(clp,20),6)



gridureal

Open-loop plant step responses
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The plot illustrates the low-frequency closed-loop insensitivity achieved by the PI control
system.
Grid Over Multi-Dimensional Parameter Spaces

This example illustrates the different options in gridding high-dimensional (e.g., n
greater than 2) parameter spaces.

Construct an uncertain matrix, m, from four uncertain real parameters, a, b, c, and d,
each making up the individual entries in m.

a
b

ureal("a",1);
ureal("b",2);
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c = ureal(°c",3);
d = ureal("d",4);
m = [a b;c d];

First, grid the (a,b) space at five places, and the (c,d) space at three places.
ml = gridureal(m,{"a";"b"},5,{"c";"d"},3);

gridureal evaluates the uncertain matrix m at these 15 grid points, resulting in the
numerical matrix m1.

Next, grid the (a,b,c,d) space at 15 places.
m2 = gridureal(m,{"a";"b";"c";"d"},15);

gridureal samples the uncertain matrix m at these 15 points, resulting in the
numerical matrix m2.

The (2,1) entry of m is just the uncertain real parameter c. Plot the histograms of the
(2,1) entry of both m1 and m2. The (2,1) entry of m1 only takes on three distinct values,
while the (2,1) entry of m2 takes on 15 distinct values uniformly through its range.

subplot(2,1,1)
hist(squeeze(m1(2,1,:)))
title("2,1 entry of ml")
subplot(2,1,2)
hist(squeeze(m2(2,1,:)))
title("2,1 entry of m2%)
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2,1 entry of m1

D 1 1 i 1 1
2 22 2.4 26 2.8 3 32 3.4 3.6 3.8 4

2,1 entry of m2

1.5

0.5

See Also

usample | usubs
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h2hinfsyn

Mixed Ho/H,, synthesis with pole placement constraints

Syntax

[gopt,h20pt,K,R,S] = hinfmix(P,r,obj,region,dkbnd,tol)

Description

h2hinfyn performs multi-objective output-feedback synthesis. The control problem is
sketched in this figure.

L —-.'EW
Pig) —= 2

Kis)

If T..(s) and T5(s) denote the closed-loop transfer functions from w to z,, and z,,
respectively, hinfmix computes a suboptimal solution of the following synthesis
problem:

Design an LTI controller K(s) that minimizes the mixed Hy/H,, criterion
2 2
a|T. |, + BITl,

subject to

| 7N suLLery < vo
© 7Tl < vo

* The closed-loop poles lie in some prescribed LMI region D.
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Recall that [|.]lc and |||l denote the H,, norm (RMS gain) and H, norm of transfer
functions.

P is any SS, TF, or ZPK LTI representation of the plant P(s), and r is a three-entry vector
listing the lengths of 25, y, and u. Note that z,, and/or z; can be empty. The four-entry
vector obj = [yo, Vo, a, B] specifies the Hs/H,, constraints and trade-off criterion, and the
remaining input arguments are optional:

* region specifies the LMI region for pole placement (the default region = [] is the
open left-half plane). Use Imireg to interactively build the LMI region description
region

+ dkbnd is a user-specified bound on the norm of the controller feedthrough matrix Dx.
The default value is 100. To make the controller K(s) strictly proper, set dkbnd = 0.

+ tol is the required relative accuracy on the optimal value of the trade-off criterion
(the default is 107%).

The function h2hinfsyn returns guaranteed H,, and H, performances gopt and h2opt
as well as the SYSTEM matrix K of the LMI-optimal controller. You can also access the
optimal values of the LMI variables R, S via the extra output arguments R and S.

A variety of mixed and unmixed problems can be solved with hinfmix. In particular, you
can use hinfmix to perform pure pole placement by setting obj = [0 0 O 0]. Note
that both z, and z; can be empty in such case.

References

Chilali, M., and P. Gahinet, “H,, Design with Pole Placement Constraints: An LMI
Approach,” IEEE Trans. Aut. Contr., 41 (1995), pp. 358-367.

Scherer, C., “Mixed H2/H-infinity Control,” Trends in Control: A European Perspective,
Springer-Verlag (1995), pp.173-216.

See Also

Imireg | msfsyn
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h2syn

H,; control synthesis for LTI plant

Syntax

[K,CL,GAM, INFO] = H2SYN(P,NMEAS,NCON)

Description

[K,CL,GAM, INFO] = H2SYN(P,NMEAS,NCON) computes a stabilizing H; optimal
controller K for a partitioned LTI plant P:

4| B B
Cy| Dy Dy

The LTI system P is partitioned where inputs to B; are the disturbances, inputs to B, are
the control inputs, output of C; are the errors to be kept small, and outputs of C, are the
output measurements provided to the controller. B; has column size (NCON) and C; has
row size (NMEAS). The controller, K, is a state-space (SS) model and has the same number
of states as P.

If P is constructed with mktito, you can omit NMEAS and NCON from the arguments.

The closed-loop system is returned in CL and the achieved H; cost y in GAM. INFO is a
struct array that returns additional information about the design.



h2syn

u — =

Uz =

———= Y

¥2

H, control system CL= 1ft(P,K)=.

Output Arguments

K

LTI controller

CL= ITt(P,K)

LTI closed-loop system Tlyquy

norng - 2
norm(CL) H, optimal cost y = I %1t
INFO Additional output information

Additional output — structure array INFO containing possible additional information

depending on METHOD)

INFO_NORMS Norms of four different quantities, full information control cost (FI),
output estimation cost (OEF), direct feedback cost (DFL) and full
control cost (FC). NORMS = [FI OEF DFL FC];

INFO.KFI Full-information gain matrix (constant feedback)

INFO.GFI Full-information closed-loop system GFlI=ss(A-B2*KFI,B1,C1-
D12*KF1,D11)

INFO . HAMX X Hamiltonian matrix (state-feedback)

INFO . HAMY Y Hamiltonian matrix (Kalman filter)
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Examples
Stabilizing Controller for MIMO Plant

Stabilize a 4-by-5 unstable plant with three states, two measurement signals, and one
control signal.

In practice, P is an augmented plant that you have constructed by combining a model of
the system to control with appropriate H2 weighting functions. For this example, use a
randomly-generated model.

rng(0, "twister™);
P = rss(3,4,5)";

This command creates a 4-output, 5-input stable model and then takes its Hermitian
conjugate. This operation yields a 5-output, 4-input unstable model. For this
example, assume that one of the inputs is a control signal and two of the outputs are
measurements.

Confirm that P is unstable. All the poles are in the right half-plane.

pole(P)

ans =

0.2593
15.9497
20.7994

Design the stabilizing controller, assuming NMEAS = 2 and NCON = 1.
[K,CL,GAM] = h2syn(P,2,1);

Examine the closed-loop system to confirm that the plant is stabilized.

pole(CL)

ans =

-26.8951
-22.4817
-20.6965
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-17.6041
-0.8694
-2.6697

Mixed-Sensitivity H2 Loop Shaping

T

Shape the singular value plots of the sensitivity © = ({ + G )" and complementary
T oy I S |

sensitivity 4 = G+ GR)™

To do so, find a stabilizing controller K that minimizes the 12 norm of:

WL s
Ty = | (W2/G)T
WeT

Assume the following plant and weights:

¢ — 1 0.1(s + 1000)
Gfs) = Wy = — T W, = 0.1,Ws = 0.
(8} =s—5M 1005 + 1 : .

Using those values, construct the augmented plant P, as illustrated in the mixsyn
reference page.

s = zpk("s");

G = 10*(s-1)/(s+1)"2;

G.u = “u2-;

G.y = "y";

W1l = 0.1*(s+1000)/(100*s+1);
Wl.u = "y2°;

Wiy = "yll*®;

w2 = tf(0.1)

W2.u = “u2*

W2.y = "yi2-

S = sumblk("y2 = ul - y");

P = connect(G,S,W1,W2,{"ul", "u2"},{"y1l1","y12","y2"});

Use h2syn to generate the controller. Note that this system has NMEAS = 1 and NCON
=1.
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[K,CL,GAM] = h2syn(P,1,1);
Examine the resulting loop shape.

G*K;

inv(1+L);

1-S;

sigmaplot(L, "k-.",S,"r",T,"g")
legend("open-loop”, "sensitivity”, "closed-loop*®)

—Hwnrr
I

Singular Values
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@ -
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[
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Limitations

* (A, By, Cy) must be stabilizable and detectable.
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*  D;s must have full column rank and Dy; must have full row rank

More About

Algorithms

The H, optimal control theory has its roots in the frequency domain interpretation
the cost function associated with time-domain state-space LQG control theory [1]. The
equations and corresponding nomenclature used here are taken from the Doyle et al.,
1989 [2]-[3].

h2syn solves the H; optimal control problem by observing that it is equivalent to a
conventional Linear-Quadratic Gaussian (LQG) optimal control problem. For simplicity,
we shall describe the details of algorithm only for the continuous-time case, in which case
the cost function J7 g satisfies

_ 1 1 T p
g = Jim Bl [} e

hmE%lT %Q cmx %

H.H'8
—ThiI:oED—I "B T% écl Dlz]@ Edt

with plant noise u; channel of intensity I, passing through the matrix [B1;0;D12] to
produce equivalent white correlated with plant { and white measurement noise 6 having
joint correlation function

= NyO
T D(t-T1)
r ©H

-g2 é%e%" Dh B -1
21

The H, optimal controller K(s) is thus realizable in the usual LQG manner as a full-state
feedback Kpr and a Kalman filter with residual gain matrix Kpc.

EE@)

E
T )af(r) or)]

~

0
H3=0
]

2-133



2 Alphabetical List

1 Kalman Filter

X = A% + Bouy + K pc(yg —Coz —Dogup)
_ T 1 T T T -1
KFC = (YCz +Nf)9 —(YCQ +BlD21)(D21D21)

where Y = Y7>0 solves the Kalman filter Riccati equation

YAT +AY -(YC] +NpO H(CoY +NF) += =0

2 Full-State Feedback

Ug = KFI"/C\
Kp; =R BIX +NT) =D MBI X +DC))

where X = X’>0 solves the state-feedback Riccati equation
ATX + XA -(XB, +N,)R'(BI X +NT) +Q =0

The final positive-feedback H, optimal controller uy = K(s)yy has a familiar closed-

form

(A - KpcCy ~ByKpy +KpeDooKpy | KL
K(s)=[3 C
= ~Kri | OE

h2syn implements the continuous optimal H; control design computations using

the formulae described in the Doyle, et al. [2]; for discrete-time plants, h2syn uses
the same controller formula, except that the corresponding discrete time Riccati
solutions (dare) are substituted for X and Y. A Hamiltonian is formed and solved

via a Riccati equation. In the continuous-time case, the optimal Hy-norm is infinite
when the plant D;; matrix associated with the input disturbances and output errors
is non-zero; in this case, the optimal H, controller returned by h2syn is computed by
first setting D11 to zero.
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1
The full information (FI) cost is given by the equation (trace (BinBl))2 . The output

estimation cost (OEF) is given by (trace (F2Y2F2'))2 , where F2=AByXy +DiyCy)

1
The disturbance feedforward cost (DFL) is (trace (LyXoLo ))2 , where L is defined
by —(Y9Cs + B;Dgy;) and the full control cost (FC) is given by (trace (o YQCi))2 .

X, and Y; are the solutions to the X and Y Riccati equations, respectively. For for
continuous-time plants with zero feedthrough term (D11 = 0), and for all discrete-

T
time plants, the optimal Hs cost y = ” Nith ”2 1s
GAM =sqrt(F1"2 + OEF™2+ trace(D11*D11%));

otherwise, GAM = Inf.

References

[1] Safonov, M.G., A.J. Laub, and G. Hartmann, “Feedback Properties of Multivariable
Systems: The Role and Use of Return Difference Matrix,” IEEE Trans. of
Automat. Contr., AC-26, pp. 47-65, 1981.

[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to
standard Hy and H,, control problems,” IEEE Transactions on Automatic Control,
vol. 34, no. 8, pp. 831-847, August 1989.

[3] Glover, K., and J.C. Doyle, “State-space formulae for all stabilizing controllers that
satisfy an H,, norm bound and relations to risk sensitivity,” Systems and Control
Letters, 1988. vol. 11, pp. 167-172, August 1989.

See Also

augw | hinfsyn
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hankelmr

Hankel minimum degree approximation (MDA) without balancing

Syntax

GRED

hankelmr(G)

GRED = hankelmr(G,order)

[GRED, redinfo] = hankelmr(G,keyl,valuel,...)

[GRED,redinfo] = hankelmr(G,order,keyl,valuel,...)

Description

hankelmr returns a reduced order model GRED of G and a struct array redinfo
containing the error bound of the reduced model and Hankel singular values of the
original system.

The error bound is computed based on Hankel singular values of G. For a stable system
Hankel singular values indicate the respective state energy of the system. Hence,
reduced order can be directly determined by examining the system Hankel SV's, ot.

With only one input argument G, the function will show a Hankel singular value plot of
the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error |G-
GRED|| o for well-conditioned model reduced problems [1]:

n
|G - Gred|l,, < 2; o;
+

Note It seems this method is similar to the additive model reduction routines balancmr
and schurmr, but actually it can produce more reliable reduced order model when the
desired reduced model has nearly controllable and/or observable states (has Hankel
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singular values close to machine accuracy). hanke Imr will then select an optimal
reduced system to satisfy the error bound criterion regardless the order one might
naively select at the beginning.

This table describes input arguments for hankelmr.

Argument Description

G LTI model to be reduced (without any other inputs will plot its Hankel
singular values and prompt for reduced order)

ORDER (Optional) an integer for the desired order of the reduced model, or
optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying
order = x:y, or a vector of integers. By default, all the anti-stable part of

a system is kept, because from control stability point of view, getting rid of unstable
state(s) is dangerous to model a system.

"MaxError"® can be specified in the same fashion as an alternative for *ORDER'. In this
case, reduced order will be determined when the sum of the tails of the Hankel sv's
reaches the 'MaxError'.

Argument Valve Description
'MaxError' Real number or vector of different |Reduce to achieve H, error.
errors

When present,

"MaxError " overides ORDER
input.

'Weights' {Wout,Win} cell array Optimal 1x2 cell array of LTI
weights Wout (output) and
Win (input). Default for both
is identity. Weights must be

invertible.

'Display' "on" or "off" Display Hankel singular plots
(default "off").

'Order' Integer, vector or cell array Order of reduced model. Use only

if not specified as 2nd argument.
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Weights on the original model input and/or output can make the model reduction
algorithm focus on some frequency range of interests. But weights have to be stable,
minimum phase and invertible.

This table describes output arguments.

Argument Description

GRED LTI reduced order model. Become multi-dimensional array when
input is a serial of different model order array.

REDINFO A STRUCT array with 4 fields:

REDINFO.ErrorBound (bound on || G-GRED || )

+ REDINFO.StabSV (Hankel SV of stable part of G)

* REDINFO.UnstabSV (Hankel SV of unstable part of G)
REDINFO.Ganticausal (Anti-causal part of Hankel MDA)

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The optimal Hankel MDA
algorithm has selected the best Minimum Degree Approximate it can find within the
allowable machine accuracy.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can
get a set of reduced order models based on your selections:

rng(1234, "twister”);

G = rss(30,5,4);

[gl, redinfol] = hankelmr(G); % display Hankel SV plot
% and prompt for order (try 15:20)

[g2, redinfo2] hankelmr(G,20);

[g3, redinfo3] hankelmr(G,[10:2:18]);

[g4, redinfo4] hankelmr (G, "MaxError®,[0.01, 0.05]);

for i = 1:4
figure(i); eval(["sigma(G,g" num2str(i) ");"D:;
end
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Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs) shows a singular value
Bode plot of a random system G with 20 states, 5 output and 4 inputs. The error system
between G and its Zeroth order Hankel MDA has it infinity norm equals to an all pass
function, as shown in All-Pass Error System Between G and Zeroth Order G Anticausal.

The Zeroth order Hankel MDA and its error system sigma plot are obtained via
commands

[g0,redinfo0] = hankelmr(G,0);
sigma(G-redinfoO.Ganticausal)

This interesting all-pass property is unique in Hankel MDA model reduction.

Singular Yalues

Singular Yalues (dB)

a0 T R AR T AT BT B AT ST
10 107" 107 10° 10 10° 10°
Frequency (radfzec)

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)
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Singular Values
30 T T T

Singular Values (dB8)

70 T R R T RS ST R ST AT T TIT TR TIT BT T
10 107 107 10" 10' 10° 10° 10t
Freguency (radfzec)

All-Pass Error System Between G and Zeroth Order G Anticausal

More About

Algorithms

Given a state-space (4,B,C,D) of a system and k&, the desired reduced order, the following
steps will produce a similarity transformation to truncate the original state-space system
to the £ order reduced model.

1 Find the controllability and observability grammians P and Q.
2 Form the descriptor

E=QP-p’I

where 0, > p 20,1, and descriptor state-space
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Take SVD of descriptor E and partition the result into £ order truncation form

BES_MBE:%’ AT+QAP|QBD
gC [Dgg cCP IDa
0 O[DJEV g
E=[Ug, E2] E pgn
@E’Ezﬁ

3 Apply the transformation to the descriptor state-space system above we have

A
Ciy Arp0_ HfElquAhQAP)[VEl Vs
M1 A0 LA

B0 B -CTH
[%25 @Ez?

(0
[C; Cy)= ;—pB évm Vgl

D, =D
4 Form the equivalent state-space model.
(A BD= Eﬁl(An —A1pAgy Ag1) S (Bi-A1pAg Bz)%

[
B0 DE H C-CyAg'Ay D) -CyA%'B, B

The final £ order Hankel MDA is the stable part of the above state-space
realization. Its anticausal part is stored in redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error system between
the original system G and the Zeroth Order Hankel MDA G, is an all-pass function [1].
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See Also

reduce | balancmr | bstmr | ncfmr | schurmr | hankelsv
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hankelsv

Compute Hankel singular values for stable/unstable or continuous/discrete system

Syntax
hankelsv(G)
hankelsv(G,ErrorType,style)

[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style)

Description

[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style) returns a column vector
SV_STAB containing the Hankel singular values of the stable part of G and SV_UNSTAB
of anti-stable part (if it exists). The Hankel SV's of anti-stable part ss(a,b,c,d) is
computed internally via ss(-a, -b, c,d). Discrete model is converted to continuous one
via the bilinear transform.

hankelsv(G) with no output arguments draws a bar graph of the Hankel singular
values such as the following:
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HE ol Srggular vz

I Hs S abile Tl ol O
I | i) vstak e Part of

gl=

This table describes optional input arguments for hankelsvd.

Argument Valve Description

ERRORTYPE "add*" Regular Hankel SV's of G
"mult*® Hankel SV's of phase matrix
"ncf* Hankel SV's of coprime factors

STYLE “abs” Absolute value
"log' logarithm scale
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More About

Algorithms

IfErrorType = "add", then hankelsv implements the numerically robust square root
method to compute the Hankel singular values [1]. Its algorithm goes as follows:

Given a stable model G, with controllability and observability grammians P and Q,
compute the SVD of P and Q:

[Up,Sp,Vp] = svd(P);
[Ug,Sq,vagl = svd(Q);

Then form the square roots of the grammians:

Lr = Up*diag(sqrt(diag(Sp)));
Lo = Ug*diag(sqrt(diag(Sq)));

The Hankel singular values are simply:
oy =svd(Lo"*Lr);

This method not only takes the advantages of robust SVD algorithm, but also ensure the
computations stay well within the “square root” of the machine accuracy.

If ErrorType = "mult”, then hankelsv computes the Hankel singular value of the
phase matrix of G [2].

If ErrorType = "ncf", then hankelsv computes the Hankel singular value of the
normalized coprime factor pair of the model [3].

References

[1] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,”
IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.
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Relative Error Method,” International J. of Adaptive Control and Signal
Processing, Vol. 2, pp. 259-272, 1988.
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[3] Vidyasagar, M., Control System Synthesis - A Factorization Approach. London: The
MIT Press, 1985.

See Also

reduce | balancmr | bstmr | ncfmr | schurmr | hankelmr
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hinfgs

Synthesis of gain-scheduled H,, controllers

Syntax

[gopt,pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description
Given an affine parameter-dependent plant

Dljijbé =A(p)x + By (pw +Bgyu
PDZ = Cl(p)x +D11(p)w +D12u
B}’ = C2x + D21w +D22u

where the time-varying parameter vector p(t) ranges in a box and is measured in real
time, hinfgs seeks an affine parameter-dependent controller

k& =Ax(PX +Bg (ply
fu=Cg(p){ +Dg (P)y

scheduled by the measurements of p(t) and such that

+ K stabilizes the closed-loop system

L Z
—= L, —=

K

for all admissible parameter trajectories p(t)
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* K minimizes the closed-loop quadratic H,, performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys and the
vector r gives the number of controller inputs and outputs (set r=[p2,m2] if y ¢ R*

and u € R™). Note that hinfgs also accepts the polytopic model of P returned, e.g., by
aff2pol.

hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic
description of the gain-scheduled controller pdK. To test if a closed-loop quadratic
performance vy is achievable, set the third input gmin to y. The arguments tol and
tolred control the required relative accuracy on gopt and the threshold for order
reduction. Finally, hinFgs also returns solutions R, S of the characteristic LMI system.

Controller Implementation

The gain-scheduled controller pdK is parametrized by p(¢) and characterized by the

Ag(p) B C
k(P k(P [ at the corners ?; of the parameter box. The command

values Kp; of
T Hk(p) D(p)E

Kj = psinfo(pdK, "sys*,j)

returns the j-th vertex controller Ky while

pv = psinfo(pdP, "par®)

vertx = polydec(pv)

Pj = vertx(:,J)

gives the corresponding corner ?; of the parameter box (pv is the parameter vector
description).

The controller scheduling should be performed as follows. Given the measurements p(¢) of
the parameters at time ¢,

1 Express p(f) as a convex combination of the ?;:
N
pt)=a® +. +ayiy, a; 20, Zaj -1
1=

This convex decomposition is computed by polydec.
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2 Compute the controller state-space matrices at time ¢ as the convex combination of
the vertex controllers Kpj;:

DAg®) Bg(®D N

a:Kn .
(&) DB 2000,

=

3  Use Ag(t), Bx(t), Cx(t), Dk(t) to update the controller state-space equations.

References
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Parameter-Varying Systems,” Automatica, 31 (1995), pp. 1251-1261.
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See Also
psys | pvec | pdsimul | polydec
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hinfnorm

H., norm of dynamic system

Syntax

ninf

hinfnorm(sys)

ninf = hinfnorm(sys,tol)
[ninf,fpeak] = hinfnorm(___ )

Description

ninf = hinfnorm(sys) returns the H, in absolute units of the dynamic system model,
Sys.

If sys is a stable SISO system, then the H, norm is the peak gain, the largest value of
the frequency response magnitude.

If sys is a stable MIMO system, then the H,, norm is the largest singular value across
frequencies.

If sys is an unstable system, then the H,, norm is defined as Inf.

If sys is a model that has tunable or uncertain parameters, then hinfnorm evaluates
the H,, norm at the current or nominal value of sys.

If is a model array, then hinfnorm returns an array of the same size as sys, where
ninf(k) = hinfnorm(sys(:,:,k)).

For stable systems, hinfnorm(sys) is the same as getPeakGain(sys).

ninf = hinfnorm(sys, tol) returns the H, norm of sys with relative accuracy tol.

[ninf,fpeak] = hinfnorm( ) also returns the frequency, fpeak, at which the
peak gain or largest singular value occurs. You can use this syntax with any of the input
arguments in previous syntaxes. If sys is unstable, then fpeak = InfF.
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Examples
Norm of MIMO System

Compute the = norm of the following 2-input, 2-output dynamic system and the
frequency at which the peak singular value occurs.

Js

. s2 4+ 5410
(3) s+1 2
5+ 5 5+ 6

G = [0 tf([3 O],[1 1 10]);tfF([1 1].[1 51),tf(2,[1 61)1;
[ninf,fpeak] = hinfnorm(G)

ninf =

3.0150

fpeak =

3.1623

The H~ norm of a MIMO system is its maximum singular value. Plot the singular values
of G and compare the result from hinfnorm.

sigma(G),grid
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Singular Values

Singular Values (dB)

'.?U i i P T | i i iyl i i iauoa gl
102 10 10¢ 10" 10°
Frequency (rad/s)

The values ninf and fpeak are consistent with the singular value plot, which displays
the values in dB.

Input Arguments

sys — Input dynamic system
dynamic system model | model array

Input dynamic system, specified as any dynamic system model or model array. sys can be
SISO or MIMO.
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tol — Relative accuracy
0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. hinfnorm
calculates ninf such that the fractional difference between ninf and the true H,, norm of
sys 1s no greater than tol.

Output Arguments

ninf — H norm of dynamic system
Inf | scalar | array

H,, norm of sys, returned as Inf, a scalar value, or an array.

+ If sys is a single stable model, then ninfis a scalar value.

+ If sysis a single unstable model, then ninfis Inf.

+ If sys is a model array, then ninf is an array of the same size as sys, where ninf(k)
= hinfnorm(sys(:, :,k)).

fpeak — Frequency of peak gain or largest singular value
Inf | nonnegative real scalar | array

Frequency at which the peak gain or largest singular value occurs, returned as Inf,
a nonnegative real scalar value, or an array. The frequency is expressed in units of
rad/TimeUnit, relative to the TimeUnit property of sys.

+ If sys is a single stable model, then fpeak is a scalar.

+ If sysis a single unstable model, then fpeak is InfF.

+ If sysis a model array, then fpeak is an array of the same size as sys.In this case,
fpeak(k) is the peak gain or largest singular value frequency of the kth model in the
array.

See Also

freqgresp | getPeakGain | sigma
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hinfstruct

H,, tuning of fixed-structure controllers

Syntax

CL = hinfstruct(CLO)

[CL,gamma, info] = hinfstruct(CLO)
[CL,gamma, info] = hinfstruct(CLO,options)
[C,gamma, info] = hinfstruct(P,CO,options)

Description

CL = hinfstruct(CLO) tunes the free parameters of the tunable genss model CLO.
This tuning minimizes the H,, norm of the closed-loop transfer function modeled by CLO.
The model CLO represents a closed-loop control system that includes tunable components
such as controllers or filters. CLO can also include weighting functions that capture
design requirements.

[CL,gamma, info] = hinfstruct(CLO) returns gamma (the minimum H,, norm) and
a data structure info with additional information about each optimization run.

[CL,gamma, info] = hinfstruct(CLO,options) allows you to specify additional
options for the optimizer using hinfstructOptions.

[C,gamma, info] = hinfstruct(P,CO,options) tunes the parametric
controller blocks CO. This tuning minimizes the H, norm of the closed-loop system
CLO = ITt(P,C0). To use this syntax, express your control system and design
requirements as a Standard Form model, as in the following illustration:



hinfstruct

CLO
] I
P
- y
0 - 0
0 G, :

i . 0r
§ 0 ~ 0Cy
i Co

P is a numeric LTI model that includes the fixed elements of the control architecture.

P can also include weighting functions that capture design requirements. CO can be a
single tunable component (for example, a Control Design Block or a genss model) or a
cell array of multiple tunable components. C is a parametric model or array of parametric
models of the same types as CO.

Input Arguments

CLO

Generalized state-space (genss) model describing the weighted closed-loop transfer
function of a control system. hinfstruct minimizes the H, norm of CLO.

CLO includes both the fixed and tunable components of the control system in a single

genss model. The tunable components of the control system are represented as Control
Design Blocks, and are stored in the CLO.Blocks property of the genss model.
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P

Numeric LTI model representing the fixed elements of the control architecture to be
tuned. P can also include weighting functions that capture design requirements. You can
obtain P in two ways:

* In MATLAB, model the fixed elements of your control system as numeric LTI models.
Then, use block-diagram building functions (such as connect and feedback) to build
P from the modeled components. Also include any weighting functions that represent
your design requirements.

+ If you have a Simulink model of your control system and have Simulink Control
Design, use 1inlFt to obtain a linear model of the fixed elements of your control
system. The Iinlft command linearizes your Simulink model, excluding specified
Simulink blocks (the blocks that represent the controller elements you want to tune).
If you are using weighting functions to represent your design requirements, connect
them in series with the linear model of your plant to obtain P.

co
Single tunable component or cell array of tunable components of the control structure.

Each entry in CO represents one tunable element of your control architecture, such as a
PID controller, a gain block, or a fixed-order transfer function. The entries of CO can be
Control Design Blocks or genss models.

For more information and examples of creating tunable models, see “Models with
Tunable Coefficients” in the Control System Toolbox™ User's Guide.

options

Set of options for hinfstruct. Use hinfstructOptions to define options. For
information about the available options, see the hinfstructOptions reference page.

Output Arguments
CL
Tuned version of the generalized state-space (genss) model CLO.

The hinfstruct command tunes the free parameters of CLO to achieve a minimum H,
norm. CL.Blocks contains the same types of Control Design Blocks as CLO.Blocks,
except that in CL, the parameters have tuned values.
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To access the tuned parameter values, use getValue. You can also access them directly
in CL.Blocks.

C
Tuned versions of the parametric models CO.

When CO is a single parametric model, C is a parametric model of the same type, with
tuned parameter values.

When CO is a cell array of parametric models, C is also a cell array. The entries in C are
parametric models of the same type as the corresponding entries in CO.

gamma
Best achieved value for the closed-loop H,, norm.

In some cases, hinfstruct performs more than one minimization run (when the
hinfstructOptions option RandomStarts > 0). In such cases, gamma is the smallest
H_, norm of all runs.

info

Data structure array containing results from each optimization run. The fields of info
are:

+ Objective — Minimum H,, norm value for each run.

When RandomStarts = 0, Objective = gamma.
+ Iterations — Number of iterations before convergence for each run.
* TunedBlocks — Tuned control design blocks for each run.

TunedBlocks differs from C in that C contains only the result from the best run.
When RandomStarts =0, TunedBlocks = C.

More About
Tips

* hinfstruct is related to hinfsyn, which also uses H, techniques to design a
controller for a MIMO plant. However, unlike hinfstruct, hinfsyn imposes no
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restriction on the structure and order of the controller. For that reason, hinfsyn
always returns a smaller gamma than hinfstruct. You can therefore use hinfsyn
to obtain a lower bound on the best achievable performance.

Algorithms

hinfstruct uses specialized nonsmooth optimization techniques to enforce closed-
loop stability and minimize the H,, norm as a function of the tunable parameters. These
techniques are based on the work in [1].

hinfstruct computes the H, norm using the algorithm of [2] and structure-preserving

eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.

. “What Is hinfstruct?”

. “Formulating Design Requirements as H-Infinity Constraints”
. “Structured H-Infinity Synthesis Workflow”

. “Models with Tunable Coefficients”

References
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See Also

genss | getValue | hinfstructOptions | hinfsyn | Itiblock.gain |
Itiblock.pid | Itiblock.ss | Itiblock.tf

Related Examples

. “Build Tunable Closed-Loop Model for Tuning with hinfstruct”
. Loop Shaping Design with HINFSTRUCT

. Decoupling Controller for a Distillation Column

. Fixed-Structure Autopilot for a Passenger Jet
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hinfstructOptions

Set options for hinfstruct

Syntax

options = hinfstructOptions
options = hinfstructOptions(Name,Value)

Description

options = hinfstructOptions returns the default option set for the hinfstruct
command.

options = hinfstructOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

hinfstructOptions takes the following Name arguments:
"Display”

String determining the amount of information to display during hinfstruct
optimization runs.

Display takes the following values:

+ "off" — hinfstruct runs in silent mode, displaying no information during or after
the run.
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+  "iter" — display optimization progress after each iteration. The display includes
the value of the closed-loop H, norm after each iteration. The display also includes
a Progress value indicating the percent change in the H,, norm from the previous
iteration.

+ "final" — display a one-line summary at the end of each optimization run. The
display includes the minimized value of the closed-loop H, norm and the number of
iterations for each run.

Default: “"final*

"Maxliter*

Maximum number of iterations in each optimization run.
Default: 300

"RandomStart*

Number of additional optimizations starting from random values of the free parameters
in the controller.

If RandomStart = O, hinfstruct performs a single optimization run starting from
the initial values of the tunable parameters. Setting RandomStart = N > Oruns N
additional optimizations starting from N randomly generated parameter values.

hinfstruct finds a local minimum of the gain minimization problem. To increase
the likelihood of finding parameter values that meet your design requirements, set
RandomStart > 0. You can then use the best design that results from the multiple
optimization runs.

Use with UseParallel = true to distribute independent optimization runs among
MATLAB workers (requires Parallel Computing Toolbox™ software).

Default: 0
"UseParallel”
Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among
workers in a parallel pool. If there is an available parallel pool, then the software
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performs independent optimization runs concurrently among workers in that pool. If no
parallel pool is available, one of the following occurs:

+ If Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in
those preferences.

+ If Automatically create a parallel pool is not selected in your preferences, then
the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can
manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
Default: false

"TargetGain”

Target H,, norm.

The hinfstruct optimization stops when the H, norm (peak closed-loop gain) falls
below the specified TargetGain value.

Set TargetGain = O to optimize controller performance by minimizing the peak closed-
loop gain. Set TargetGain = Inf to just stabilize the closed-loop system.

Default: 0
"TolGain*

Relative tolerance for termination. The optimization terminates when the H,, norm
decreases by less than TolGain over 10 consecutive iterations. Increasing TolGain
speeds up termination, and decreasing TolGain yields tighter final values.

Default: 0.001
"MaxFrequency”
Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy |p] <
MaxFrequency.
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To let hinfstruct choose the closed-loop poles automatically based upon the system's
open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or
high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: Inf
“*MinDecay"
Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay. Increase this value to
improve the stability of closed-loop poles that do not affect the closed-loop gain due to
pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: 1e-7

Output Arguments
options

Option set containing the specified options for the hinfstruct command.

Examples

Create Options Set for hinfstruct

Create an options set for a hinfstruct run using three random restarts and a stability
offset of 0.001. Also, configure the hinfstruct run to stop as soon as the closed-loop
gain is smaller than 1.

options = hinfstructOptions("TargetGain®,1,...
"RandomStart®,3, "StableOffset”,le-3);

Alternatively, use dot notation to set the values of options.



hinfstructOptions

options = hinfstructOptions;
options.TargetGain = 1;
options.RandomStart = 3;
options.StableOffset = 1le-3;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a hinfstruct run using 20 random restarts. Execute these
independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel
computing to speed up hinfstruct tuning of fixed-structure control systems. When you
run multiple randomized hinfstruct optimization starts, parallel computing speeds up
tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences, manually start a parallel pool using parpool. For example:

parpool ;

If Automatically create a parallel pool is selected in your preferences, you do not
need to manually start a pool.

Create an hinfstructOptions set that specifies 20 random restarts to run in parallel.
options = hinfstructOptions("RandomStart”,20, "UseParallel”,true);

Setting UseParallel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.

Use the hinfstructOptions set when you call hinfstruct. For example, suppose
you have already created a tunable closed loop model CLO. In this case, the following
command uses parallel computing to tune CLO.

[CL,gamma, info] = hinfstruct(CLO,options);

See Also

hinfstruct
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hinfsyn

Compute H,, optimal controller for LTI plant

Syntax

[K,CL,GAM, INFO]

hinfsyn(P)

[K,CL,GAM, INFO] = hinfsyn(P,NMEAS,NCON)

[K,CL,GAM, INFO]

hinfsyn(P,NMEAS,NCON,KEY1,VALUEL1,KEY2,VALUE2, .. .)

Description

hinfsyn computes a stabilizing H,, optimal Iti/ss controller K for a partitioned I1ti
plant P.

The controller, K, stabilizes the P and has the same number of states as P. The system

P is partitioned where inputs to B; are the disturbances, inputs to B, are the control
inputs, output of C; are the errors to be kept small, and outputs of Cs are the output
measurements provided to the controller. B, has column size (NCON) and C, has row size
(NMEAS). The optional KEY and VALUE inputs determine tolerance, solution method and
so forth.

The closed-loop system is returned in CL. This closed-loop system is given by CL =
1Tt (P,K) as in the following diagram.
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>Z

The achieved H,, cost y is returned as GAM. The struct array INFO contains additional
information about the design.

Optional Input Arguments

Property Value Description
"GMAX* real Initial upper bound on GAM (default=1n¥)
"GMIN™ real Initial lower bound on GAM (default=0)
"TOLGAM™ real Relative error tolerance for GAM (default=.01)
"So* real Frequency SO at which entropy is evaluated, only
applies to METHOD "maxe*® (default=InT)
"METHOD* “ric* Standard 2-Riccati solution (default)
"Imi* LMI solution
“"maxe* Maximum entropy solution
"DISPLAY" “off" No command window display, or command window
L. displays synthesis progress information (default)
on

When DISPLAY="0n", the hinfsyn program displays several variables indicating the
progress of the algorithm. For each y value being tested, the minimum magnitude, real
part of the eigenvalues of the X and Y Hamiltonian matrices are displayed along with
the minimum eigenvalue of X, and Y,,, which are the solutions to the X and Y Riccati

equations, respectively. The maximum eigenvalue of X, Y., scaled by y 2 is also displayed.
A # sign is placed to the right of the condition that failed in the printout.
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Output Arguments Description

K Iti controller

CL= Ift(P,K) Iti closed-loop system e,
GAM = H, costy=

norm(CL, Inf) "Thu

INFO Additional output information

Additional output — structure array INFO containing possible additional information

depending on METHOD)
INFO.AS All solutions controller, 1ti two-port LFT
INFO._KFI Full information gain matrix (constant feedback
Ox@) O
uy () =K

S H0e

INFO .KFC Full control gain matrix (constant output-injection; Kp¢ is the
dual of Kpy)

INFO .GAMFI H,, cost for full information Kzy
INFO .GAMFC H.,, cost for full control Kz
Examples

Following are three simple problems solved via hinfsyn.

Example 1: A random 4-by-5 plant with 3-states, NMEAS=2, NCON=2
rng(0, "twister™);

P = rss(3,4,5);

[K,CL,GAM] = hinfsyn(P,2,2);

The optimal H,, cost in this case is GAM = 1.3940. You verify

that ||Ty1u1 " 2 SuUp0,,ax (Tyllﬁ (ja))) <y with a sigma plot
« w
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sigma(CL,ss(GAM));
Example 2: Mixed-Sensitivity

_0.1(s +1000)

G(s):ﬂ, W,
s—1 100s +1

, Wy =0.1, no Ws.

s=zpk("s");

G=(s-1)/(s+1);

W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=[];
P=augw(G,W1,W2,W3);
[K,CL,GAM]=hinfsyn(P);
sigma(CL,ss(GAM));

In this case, GAM = 0.1854 = -14.6386 db

Example 3: Mixed sensitivity with W; removed.
s=zpk(“s");

G=(s-1)/(s+1);

Wi=[]; w2=0.1; w3=[];

P=augw(G,W1,W2,W3);

[K,CL,GAM]=hinfsyn(P);

In this case, GAM=0, K=0, and CL=K*(1+G*K)=0.

Limitation

The plant must be stabilizable from the control inputs © and detectable from the
measurement output y:

(A,B) must be stabilizable and (Cy,A) must be detectable.

Otherwise, hinfsyn returns an error.

More About

Algorithms

The default "ric® method uses the two-Riccati formulae ([1],[2]) with loopshifting [3].
In the case of the " Imi ® method, hinfsyn employs the LMI technique ([4],[5],[6]). With
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"METHOD® "maxe®, Kreturnsthe max entropy H, controller that minimize an entropy
integral relating to the point sO; i.e.,

2 00 e D S 2 D
Entropy = ;—HJ'_OO ln‘detI -y zTylul(ja))'Tylu1 (J O)Eémé!dw
0

where Ty, is the closed-loop transfer function CL. With all methods, hinfsyn uses a

standard y-iteration technique to determine the optimal value of y. Starting with high
and low estimates of y. The y-iteration is a bisection algorithm that iterates on the value
of y in an effort to approach the optimal H,, control design. The stopping criterion for the
bisection algorithm requires the relative difference between the last y value that failed
and the last y value that passed be less than TOLGAM (default = .01)

At each value of y, the algorithm employed requires tests to determine whether a solution
exists for a given y value. In the case of the "ric”® method, the conditions checked for the
existence of a solution are:

*  H and J Hamiltonian matrices (which are formed from the state-space data of P and
the y level) must have no imaginary-axis eigenvalues.

* the stabilizing Riccati solutions X,, and Y,, associated with the Hamiltonian matrices
must exist and be positive, semi-definite.

spectral radius of (X,,Y,) must be less than or equal to y*

When, DISPLAY is 'on', the hinfsyn program displays several variables, which indicate
which of the above conditions are satisfied for each y value being tested. In the case of
the default "ric” method, the display includes the current value of y being tested, real
part of the eigenvalues of the X and Y Hamiltonian matrices along with the minimum
eigenvalue of X, and Y,,, which are the solutions to the X and Y Riccati equations,

respectively. The maximum eigenvalue of X, Y., scaled by y 2, is also displayed. A # sign
is placed to the right of the condition that failed in the printout. A similar display is
produced with method "Imi*®

The algorithm works best when the following conditions are satisfied by the plant:
D5 and Dy; have full rank.

0 7 has full column rank for all @ € R.
0 G Dpp
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-jwl B
%4 J 1 % has full row rank for all ® € R.
0 C  DuC

When the above rank conditions do not hold, the controller may have undesirable
properties: If D5 and Dy, are not full rank, the H,, controller K may have large high-
frequency gain. If either of the latter two rank conditions does not hold at some frequency
®, the controller may have very lightly damped poles near that frequency .

In general, the solution to the infinity-norm optimal control problem is non-unique.
The controller returned by hinfsyn is only one particular solution, K. When the
"ric" method is selected, the INFO.AS field of INFO contains the all- solution
controller parameterization Kyg. All solutions to the infinity-norm control problem are

parameterized by a free stable contraction map @, which is constrained by @, <1.In

other words, the solutions include every stabilizing controller K(s) that makes
||Ty1u1 "oo = SUPOmax (Tylu1 (]CO)) <7.
[0)

These controllers are given by:

K=1Ft(INFO.AS,Q)

where Q is a stable LTI system satisfying norm(Q, Inf) <1.

W——m >Z
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An important use of the infinity-norm control theory is for direct shaping of closed-loop
singular value Bode plots of control systems. In such cases, the system P is typically the
plant augmented with suitable loop-shaping filters — see mixsyn.
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See Also

augw | h2syn | hinfstruct | mktito | ncfsyn | loopsyn
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icomplexify

Helper function for complexify

Syntax

DeltaR = icomplexify(DeltaCR)

Description
icomplexify works on structures to extract a real value from a pair of related fields.

DeltaR = icomplexify(DeltaCR) affects field pairs of DeltaCR named "foo" and
"foo_cmpxFy" where "foo" can be any field name. DeltaR is the same as DeltaCR
except that the fields "foo_cmpxFy" are removed. complexify, by default, complexifies
the real uncertainty with ucomplex atoms, though optionally ultidyn atoms can be
used. If a ucomplex uncertainty was used to complexify the uncertain system, the real
parts of "foo_cmpxFfy" are added to the real parts of "foo". If a ultidyn uncertainty
was used to complexify the uncertain system, only the real parts of "foo" are returned.

See Also

complexify | robuststab
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iconnect

Create empty iconnect (interconnection) objects

Syntax

H = iconnect

Description

Interconnection objects (class iconnect) are an alternative to sysic, and are used to
build complex interconnections of uncertain matrices and systems.

An 1connect object has 3 fields to be set by the user, Input, Output and Equation.
Input and Output are icsignal objects, while Equation.is a cell-array of equality
constraints (using equate) on icsignal objects. Once these are specified, then the
System property is the input/output model, implied by the constraints in Equation.
relating the variables defined in Input and Output.

Examples

iconnect can be used to create the transfer matrix M as described in the following
figure.

| B2
™

L‘i"
i

| .

|
-

£ -

Yy M

Create three scalar icsignal: r, e andy. Create an empty iconnect object, M.
Define the output of the interconnection to be [e; y], and the input to be r. Define two
constraints among the variables: e = r-y,andy = (2/s) e. Get the transfer function
representation of the relationship between the input (r) and the output [e; y].

icsignal(1);
icsignal(1);
icsignal(1);
iconnect;

=K 0~
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M_Input = r;

M.Output = [e;v]:

M.Equation{l} = equate(e,r-y);
M_.Equation{2} equate(y,tf(2,[1 0])*e);
tF(M_System)

The transfer functions from input to outputs are

s
#1: ————-
s + 2

2
#2: ————-
s + 2

By not explicitly introducing e, this can be done more concisely with only one equality
constraint.

icsignal (1);

icsignal (1);

iconnect;

-Input = r;

-Output = [r-y;vl;

-Equation{l} = equate(y,tf(2,[1 ODD*(r-y));
tf(N.System)

zZ2zZz2z2zz2 =

You have created the same transfer functions from input to outputs.

s
#1: ————-
s + 2

2
#2: ————-
s + 2

You can also specify uncertain, multivariable interconnections using iconnect. Consider
two uncertain motor/generator constraints among 4 variables [V;1;T;W], V-R*1-
K*W=0, and T=K*1I. Find the uncertain 2x2 matrix B so that [V;T] = B*[W;I].

R = ureal("R",1, "Percentage”,[-10 40]);

K = ureal ("K",2e-3, "Percentage”,[-30 30]);
V = icsignal(1);

1 = icsignal(1);

T = icsignal(l);
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W = icsignal(1);
M = iconnect;
M.Input = [W;I];
M.Output = [V;T1;
M.Equation{l1} = equate(V-R*I-K*W,iczero(1));
M.Equation{2} = equate(T,K*I);
B = M.System
UMAT: 2 Rows, 2 Columns
K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
R: real, nominal = 1, variability = [-10 40]%, 1 occurrence
B.NominalValue
ans =
0.0020 1.0000
0 0.0020

A simple system interconnection, identical to the system illustrated in the sysic
reference pages. Consider a three-input, two-output state-space matrix T,

noise

clp

deltemp

+—— setpoint

M1 =——57.3 Wt deltemp

getpoint

= rss(3,2,2);
rss(1,1,2);
rss(1,1,1);
= rss(1,1,1);

=>XT
1l
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M = iIconnect;
noise = icsignal(1);
deltemp = icsignal(l);
setpoint = icsignal(l);
yp = icsignal(2);
rad2deg = 57.3
rad2deg =
57.3000
M_.Equation{l} = equate(yp,P*[W*deltemp;A*K*[noise+yp(2);setpoint]]);
M.Input = [noise;deltemp;setpoint];
M.Output = [rad2deg*yp(1);setpoint-yp(2)];
T = M.Systenm;
size(T)
State-space model with 2 outputs, 3 inputs, and 6 states.

Limitations

The syntax for iconnect objects and icsignals is very flexible. Without care, you

can build inefficient (i.e., nonminimal) representations where the state dimension of

the interconnection is greater than the sum of the state dimensions of the components.
This is in contrast to sysic. In sysic, the syntax used to specify inputs to systems (the
input_to_ListedSubSystemName variable) forces you to include each subsystem of the
interconnection only once in the equations. Hence, interconnections formed with sysic
are componentwise minimal. That is, the state dimension of the interconnection equals
the sum of the state dimensions of the components.

More About

Algorithms

Each equation represents an equality constraint among the variables. You choose the
input and output variables, and the imp2exp function makes the implicit relationship
between them explicit.

See Also

icsignal | sysic
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icsignal

Create 1csignal object of specified dimension

Syntax

v = icsignal(n);
v = icsignal(n, "name")
Description

icsignal creates an icsignal object, which is a symbolic column vector. The
icsignal object is used with 1connect objects to specify signal constraints described by
the interconnection of components.

v = icsignal(n) creates an icsignal object of vector length n. The value of n
must be a nonnegative integer. icsignal objects are symbolic column vectors, used in
conjunction with Iconnect (interconnection) objects to specify the signal constraints
described by an interconnection of components.

v = icsignal(n,name) creates an icsignal object of dimension n, with internal
name identifier given by the character string argument name.

See Also

iconnect | sysic
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imp2ss

System realization via Hankel singular value decomposition

Syntax
[a.b,c,d,totbnd,hsv] = imp2ss(y)

[a,b,c,d,totbnd,hsv]

imp2ss(y,ts,nu,ny,tol)
[ss,totbnd,hsv] = imp2ss(imp)

[ss,totbnd,hsv] = imp2ss(imp,tol)

Description

The function imp2ss produces an approximate state-space realization of a given impulse
response

imp=mksys(y,t,nu,ny,"imp);

using the Hankel SVD method proposed by S. Kung [2]. A continuous-time realization
is computed via the inverse Tustin transform (using bi 1in) if ¢ is positive; otherwise
a discrete-time realization is returned. In the SISO case the variable y is the impulse
response vector; in the MIMO case y is an N+1-column matrix containing N + 1 time
samples of the matrix-valued impulse response Hy, ..., Hy of an nu-input, ny-output
system stored row-wise:

¥y = [Ho();Ha(2)'s Hs()'s ... s Hn()'

The variable tol bounds the H,, norm of the error between the approximate realization
(a, b, ¢, d) and an exact realization of y; the order, say n, of the realization (a, b, c,

d) is determined by the infinity norm error bound specified by the input variable

tol. The inputs ts, nu, ny, tol are optional; if not present they default to the

valuests = 0, nu = 1, ny = (number of rows of y)/nu, tol = 0.017; . The output

hsv =[07,09,...] returns the singular values (arranged in descending order of magnitude)
of the Hankel matrix:
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%Hl Hy Hg HNE
e Hs Hy 0 -
r=0H H, H 0 C
2 "4+ 75 . C
D . . N N [
Hiy 0 0s F

Denoting by Gy a high-order exact realization of y, the low-order approximate model G
enjoys the H, norm bound

IG -Gy |, <totbnd

where
N
totbnd =2 g;.
1
i:;-l

More About

Algorithms

The realization (a, b, ¢, d) is computed using the Hankel SVD procedure proposed by
Kung [2] as a method for approximately implementing the classical Hankel factorization
realization algorithm. Kung's SVD realization procedure was subsequently shown to be
equivalent to doing balanced truncation (balmr) on an exact state-space realization of
the finite impulse response {y(1),....y(N)} [3]. The infinity norm error bound for discrete
balanced truncation was later derived by Al-Saggaf and Franklin [1]. The algorithm is as
follows:

1 Form the Hankel matrix I" from the data y.

2 Perform SVD on the Hankel matrix
r=Uyv+=[UU, =U1 21V
Ho s,Hv+H

where X; has dimension n X n and the entries of Xy are nearly zero. U; and V; have
ny and nu columns, respectively.



imp2ss

3 Partition the matrices U; and V; into three matrix blocks:

W D:VME

Ul= Wioier
W13 EV1sE

where Ull’Ul3 Dcny xn and Vll’V13 Dcnu xn .

4 A discrete state-space realization is computed as

1
2

o=

A=3,:Uy,

Bzziév*n
_1

CZU]_lZ]_Z

D:HO

where

_ W0 Wi

U =
V1o Vst

5 If the sample time ¢ is greater than zero, then the realization is converted to
continuous time via the inverse of the Tustin transform

Otherwise, this step is omitted and the discrete-time realization calculated in Step 4
is returned.

References

[1] Al-Saggaf, U.M., and G.F. Franklin, “An Error Bound for a Discrete Reduced Order
Model of a Linear Multivariable System,” IEEE Trans. on Autom. Contr., AC-32,

1987, p. 815-819.
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ispsys

True for parameter-dependent systems

Syntax

bool = ispsys(sys)

Description

bool = ispsys(sys) returns 1 if Sys is a polytopic or parameter-dependent system.

See Also
psys | psinfo
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isuncertain

Check whether argument is uncertain class type

Syntax

B = isuncertain(A)

Description

Returns true if input argument is uncertain, False otherwise. Uncertain classes are
umat, ufrd, uss, ureal, ultidyn, ucomplex, ucomplexm, and udyn.

Examples

In this example, you verify the correct operation of isuncertain on double, ureal, ss,
and uss objects

isuncertain(rand(3,4))
ans =

0
isuncertain(ureal("p*,4))
ans =

1
isuncertain(rss(4,3,2))
ans =

0
isuncertain(rss(4,3,2)*[ureal("p1*,4) 6;0 1]
ans =

1

Limitations

isuncertain only checks the class of the input argument, and does not actually verify
that the input argument is truly uncertain. Create a umat by lifting a constant (i.e., not-
uncertain) matrix to the umat class.



isuncertain

A = umat([2 3;4 5;6 7]);

Note that although A is in class umat, it is not actually uncertain. Nevertheless, based on
class, the result of isuncertain(A) is true.

isuncertain(A)

ans =
1

The result of simplify(A) is a double, and hence not uncertain.
isuncertain(simplify(A))

ans =
0
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Iftdata

Decompose uncertain objects into fixed normalized and fixed uncertain parts

Syntax

[M,Delta] Iftdata(A);

[M,Delta] = Iftdata(A,List);
[M,Delta,Blkstruct] = Iftdata(A);

[M,Delta,Blkstruct,Normunc] = Iftdata(A);

Description

Iftdata decomposes an uncertain object into a fixed certain part and a normalized
uncertain part. I ftdata can also partially decompose an uncertain object into an
uncertain part and a normalized uncertain part. Uncertain objects (umat, ufrd, uss)
are represented as certain (i.e., not-uncertain) objects in feedback with block-diagonal
concatenations of uncertain elements.

[M,Delta] = Iftdata(A) separates the uncertain object A into a certain object M and
a normalized uncertain matrix Delta such that A is equal to 1 ft(Delta,M), as shown
below.

> Delta

If A is a umat, then M will be double; if A is a uss, then M will be ss; if A is a ufrd, then
M will be Frd. In all cases, Delta is a umat.

[M,Delta] = Iftdata(A,List) separates the uncertain object A into an uncertain
object M, in feedback with a normalized uncertain matrix Delta. List is a cell (or char)
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array of names of uncertain elements of A that make up Delta. All other uncertainty in A
remains in M.

Iftdata(A, fieldnames(A.Uncertainty)) is the same as 1ftdata(A).

[M,DELTA,BLKSTRUCT] = Iftdata(A) returns an N-by-1 structure array BLKSTRUCT,
where BLKSTRUCT (1) describes the i-th normalized uncertain element. This uncertainty
description can be passed directly to the low-level structured singular value analysis
function mussv.

[M,DELTA,BLKSTRUCT,NORMUNC] = Iftdata(A) returns the cell array
NORMUNC of normalized uncertain elements. Each normalized element has the

string "Normalized” appended to its original name to avoid confusion. Note that
ITt(blkdiag(NORMUNC{:}) ,M) is equivalent to A.

Examples

Create an uncertain matrix A with 3 uncertain parameters pl, p2 and p3. You can
decompose A into its certain, M, and normalized uncertain parts, Delta.

pl ureal ("pl*,-3, "perc”,40);
p2 ucomplex("p2*,2);

A = [pl pl+p2;1 p2];

[M,Delta] = Iftdata(A);

You can inspect the difference between the original uncertain matrix, A, and the result
formed by combining the two results from the decomposition.

simplify(A-1ft(Delta,M))
ans =

==

0 0 1.0954 1.0954
0 0 0 1.0000
1.0954 1.0000 -3.0000 -1.0000
0 1.0000 1.0000 2.0000

You can check the worst-case norm of the uncertain part using wcnorm. Compare
samples of the uncertain part A with the uncertain matrix A.
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wcn = wcnorm(Delta)
wen =
Ibound: 1.0000
ubound: 1.0001

usample(Delta,5)
ans(:,:,1) =
0.8012 0
0 0.2499 + 0.6946i
ans(:,:,2) =
0.4919 0
0 0.2863 + 0.6033i
ans(:,:,3) =
-0.1040 0
0 0.7322 - 0.3752i
ans(:,:,4) =
0.8296 0
0 0.6831 + 0.1124i
ans(:,:,5) =
0.6886 0
0 0.0838 + 0.3562i

Uncertain Systems

Create an uncertain matrix A with 2 uncertain real parameters v1 and v2 and create an
uncertain system G using A as the dynamic matrix and simple matrices for the input and
output.

A = [ureal("pl®,-3,"perc”,40) 1;1 ureal("p27,-2)];
sys = ss(A,[1;0],[0 1],0);

sys. InputGroup.Actualln = 1;
sys.OutputGroup.ActualOut = 1;

You can decompose G into a certain system, MSys, and a normalized uncertain matrix,
Delta. You can see from Msys that it is certain and that the input and output groups
have been adjusted.

[Msys,Delta] = Iftdata(sys);

Msys
a =
x1 x2
x1 -3 1
X2 1 -2
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b =
ul u2 u3
x1 1.095 0 1
X2 0 1 0
CcC =
X1 X2
yl 1.095 0
y2 0 1
y3 0 1
d =
ul u2 u3
yl 0 0 0
y2 0 0 0
y3 0 0 0
Input groups:
Name Channels
Actualln 3
pl_NC 1
p2_NC 2
Output groups:
Name Channels
ActualOut 3
p1_NC 1
p2_NC 2

Continuous-time model.

You can compute the norm on samples of the difference between the original uncertain

matrix and the result formed by combining Msys and Delta.

norm(usample(sys-I1ft(Delta,Msys),"pl-,4,"p2",3),"Inf")
ans =

[eNeoNoNe]
[eNeoNeoNe]
[eNeoNoNe]
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Partial Decomposition

Create an uncertain matrix A and derive an uncertain matrix B using an implicit-to-
explicit conversion, imp2exp. Note that B has 2 uncertain parameters R and K. You can
decompose B into certain, M, and normalized uncertain parts, Delta.

ureal("R",1, "Percentage”,[-10 40]);
ureal ("K",2e-3, "Percentage”,[-30 30]);
[1 -R 0 -K;0 -K 1 0];
x = [13];
x = [4 2];

imp2exp(A,Yidx,Uidx);
[M,Delta] = Iftdata(B);

mC<»Xx=T
oo il i

The same operation can be performed by defining the uncertain parameters, K and R, to
be extracted.

[MK,DeltaR] = Iftdata(B, "R");
MK
UMAT: 3 Rows, 3 Columns
K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
[MR,DeltaK] = Iftdata(B, "K");
MR
UMAT: 4 Rows, 4 Columns
R: real, nominal = 1, variability = [-10 40]%, 1 occurrence

simplify(B-1ft(Delta,M))

ans =

0 0

0 0
simplify(B-1ft(DeltaR,MK))
ans =

0 0

0 0
simplify(B-1ft(DeltaK,MR))
ans =

0 0

0 0

Sample and inspect the uncertain part as well as the difference between the original
uncertain matrix and the sampled matrix. You can see the result formed by combining
the two results from the decomposition.

[Mall,Deltaall] = Iftdata(B,{"K";"R"});
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simplify(Mall)-M
ans =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
See Also
Ift | ssdata
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Imiedit

Specify or display systems of LMIs as MATLAB expressions

Syntax

Imiedit

Description

Imieditis a graphical user interface for the symbolic specification of LMI problems.
Typing Imiedit calls up a window with two editable text areas and various buttons. To
specify an LMI system,

Give it a name (top of the window).

Declare each matrix variable (name and structure) in the upper half of the window.
The structure is characterized by its type (S for symmetric block diagonal, R for
unstructured, and G for other structures) and by an additional structure matrix
similar to the second input argument of Imivar. Please use one line per matrix
variable in the text editing areas.

Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI
can stretch over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by
pressing the corresponding button:

Visualize the sequence of Imivar/Imiterm commands needed to describe this LMI
system (view commands buttons)

Conversely, display the symbolic expression of the LMI system produced by a
particular sequence of Imivar/Imiterm commands (click the describe. . . buttons)

Save the symbolic description of the LMI system as a MATLAB string (save button).
This description can be reloaded later on by pressing the load button

Read a sequence of Imivar/Imiterm commands from a file (read button). The matrix
expression of the LMI system specified by these commands is then displayed by
clicking on describe the LMIs...
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*  Write in a file the sequence of Imivar/Imiterm commands needed to specify a
particular LMI system (write button)

* Generate the internal representation of the LMI system by pressing create. The
result is written in a MATLAB variable with the same name as the LMI system

More About
Tips
Editable text areas have built-in scrolling capabilities. To activate the scroll mode, click

in the text area, maintain the mouse button down, and move the mouse up or down. The
scroll mode is only active when all visible lines have been used.

See Also

Imivar | Imiterm | newlmi | Imiinfo
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Imiinfo

Information about variables and term content of LMIs

Syntax

Imiinfo

Description

Imi info provides qualitative information about the system of LMIs Imisys. This
includes the type and structure of the matrix variables, the number of diagonal blocks in
the inner factors, and the term content of each block.

Imiinfo is an interactive facility where the user seeks specific pieces of information.
General LMIs are displayed as

N" * L(x) * N < M * R(X) * M

where N,M denote the outer factors and L,R the left and right inner factors. If the outer
factors are missing, the LMI is simply written as

L(X) < R(X)
If its right side is zero, it is displayed as
N" * L(x) * N <0

Information on the block structure and term content of L(X) and R(X) is also available.
The term content of a block is symbolically displayed as

Cl + A1*X2*B1l + B1"*X2*Al" + a2*X1l + x3*Q1
with the following conventions:

+ X1, X2, %3 denote the problem variables. Upper-case X indicates matrix variables
while lower-case X indicates scalar variables. The labels 1,2,3 refer to the first, second,
and third matrix variable in the order of declaration.

* Cj refers to constant terms. Special cases are 1 and —1 (I =identity matrix).
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* Aj, BjJ denote the left and right coefficients of variable terms. Lower-case letters
such as a2 indicate a scalar coefficient.

* Qj is used exclusively with scalar variables as in X3*Q1.

The index j in Aj, Bj, Cj, QJ is a dummy label. Hence C1 may appear in several
blocks or several LMIs without implying any connection between the corresponding
constant terms. Exceptions to this rule are the notations A1*X2*A1" and A1*X2*B1 +
B1"*X2"*A1" which indicate symmetric terms and symmetric pairs in diagonal blocks.

Examples

Consider the LMI

0 ELzX +ATYB+BTYTA +1 XCE
H cTx —zIE

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If this LMI is
described in Imis, information about X and the LMI block structure can be obtained as

follows:
Imiinfo(Imis)

LMI ORACLE

This is a system of 1 LMI with 3 variable matrices

Do you want information on
(v) matrix variables (D) LMmIs (g) quit

> v
Which variable matrix (enter its index k between 1 and 3) ? 1

X1 1s a 2x2 symmetric block diagonal matrix
its (1,1)-block is a full block of size 2

This is a system of 1 LMI with 3 variable matrices
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Do you want information on
(v) matrix variables (D) LMmIs (g) quit

?> 1
Which LMI (enter its number k between 1 and 1) ? 1
This LMI is of the form
0 < R(X)
where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

> w

Info about the right inner factor
block (1,1) = I + al*X1 + A2*X2*B2 + B2"*X2"*A2*
block (2,1) : A3*X1
block (2,2) : x3*A4

(w) whole factor (b) only one block
(o) other LMI (t) back to top level

This is a system of 1 LMI with 3 variable matrices

Do you want information on
(v) matrix variables (D) LMmIs (g) quit

?>q
It has been a pleasure serving you!

Note that the prompt symbol is ?> and that answers are either indices or letters. All
blocks can be displayed at once with option (W), or you can prompt for specific blocks
with option (b).
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More About

Tips

Imiinfo does not provide access to the numerical value of LMI coefficients.

See Also

decinfo | Iminbr | matnbr | decnbr
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Iminbr

Return number of LMIs in LMI system

Syntax

k = Iminbr(Imisys)

Description

Iminbr returns the number k of linear matrix inequalities in the LMI problem described
in Imisys.

See Also

Imiinfo | matnbr
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Imireg

Specify LMI regions for pole placement

Syntax
region = Imireg

region = Imireg(regl,reg2,...)

Description

Imireg is an interactive facility to specify the LMI regions involved in multi-objective H.,
synthesis with pole placement constraints (see msfsyn). Recall that an LMI region is_any

convex subset D of the complex plane that can be characterized by an LMI in z and z ,
l.e.,

D={z0C:I+ Mz MTz< 0}

for some fixed real matrices M and L = L”. This class of regions encompasses half planes,
strips, conic sectors, disks, ellipses, and any intersection of the above.

Calling Imireg without argument starts an interactive query/answer session where
you can specify the region of your choice. The matrix region = [L, M] is returned upon
termination. This matrix description of the LMI region can be passed directly to msfsyn
for synthesis purposes.

The function Imireg can also be used to intersect previously defined LMI regions regl,
reg2, . ... The output region is then the [L, M] description of the intersection of these
regions.

See Also

msfsyn
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Imiterm

Specify term content of LMIs

Syntax

Imiterm(termiD,A,B,flag)

Description

Imiterm specifies the term content of an LMI one term at a time. Recall that LMI term
refers to the elementary additive terms involved in the block-matrix expression of the
LMI. Before using Imiterm, the LMI description must be initialized with setImis and
the matrix variables must be declared with Imivar. Each Imiterm command adds one
extra term to the LMI system currently described.

LMI terms are one of the following entities:

+ outer factors

* constant terms (fixed matrices)

variable terms AXB or AX”B where X is a matrix variable and A and B are given
matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in
the blocks on or below the diagonal (or equivalently, only the terms in blocks on or
above the diagonal). For instance, specify the blocks (1,1), (2,1), and (2,2) in a two-block
LMI.

In the calling of Imiterm, termlD is a four-entry vector of integers specifying the term
location and the matrix variable involved.

termID ()= O F

op

where positive p is for terms on the left-side of the p-th LMI and negative p is for terms
on the right-side of the p-th LMI.
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Recall that, by convention, the left side always refers to the smaller side of the LMI. The
index p is relative to the order of declaration and corresponds to the identifier returned
by newlmi.

termID(@ : 3) = Q0,0] for outer ‘factors. . o
I, j]1 for terms in the (i, j)-th block of the left or right inner factor

[0 for outer factors
termID(4) = Ex for variable terms AXB

%x for variable terms AX T B

where X is the identifier of the matrix variable X as returned by Imivar.

The arguments A and B contain the numerical data and are set according to:

Type of Term A B

outer factor N matrix value of N omit

constant term C matrix value of C omit

variable term matrix value of A matrix value of B
AXB or AX'B (1 if A is absent) (1 if B is absent)

Note that identity outer factors and zero constant terms need not be specified.

The extra argument Flag is optional and concerns only conjugated expressions of the
form

(AXB) + (AXB") = AXB + BTXPA"

in diagonal blocks. Setting flag = "s" allows you to specify such expressions with a
single Imiterm command. For instance,

Imiterm([1 1 1 X],A,1,"s")

adds the symmetrized expression AX + XTA” to the (1,1) block of the first LMI and
summarizes the two commands

Imiterm([1 1 1 X],A,1)
Imiterm([1 1 1 —X],1,A")
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Aside from being convenient, this shortcut also results in a more efficient representation
of the LMI.

Examples

Consider the LMI

2AXAT - E+DD" B X, [ pexicT+cxfc? o O

H xI'B -1 H 0 —sz[ﬁM

where X, X, are matrix variables of Types 2 and 1, respectively, and x5 is a scalar
variable (Type 1).

After initializing the LMI description with setImis and declaring the matrix variables
with Imivar, the terms on the left side of this LMI are specified by:

Imiterm([1 1 1 X2],2*%A,A") % 2*A*X2*A*"
Imiterm([1 1 1 x3],-1,E) % -X3*E

Imiterm([1 1 1 0],D*D") % D*D*"
Imiterm([1 2 1 -X1],1,B) % X1"*B
Imiterm([1 2 2 0],-1) % -1

Here X1, X2, X3 should be the variable identifiers returned by Imivar.

Similarly, the term content of the right side is specified by:

Imiterm([-1 O O O],M) % outer factor M
Imiterm([-1 1 1 X1],C,C","s") % C*X1*C"+C*X1"*C*
Imiterm([-1 2 2 X2],-F,1) % -F*X2

Note that CX,CT + CX;7C7 is specified by a single Imiterm command with the flag "s*"
to ensure proper symmetrization.

See Also

setlmis | Imivar | getlmis | Imiedit | newlmi

2-200



Imivar

Imivar

Specify matrix variables in LMI problem

Syntax
X = Imivar(type,struct)

[X,n,sX] = Imivar(type,struct)

Description

Imivar defines a new matrix variable X in the LMI system currently described. The
optional output X is an identifier that can be used for subsequent reference to this new
variable.

The first argument type selects among available types of variables and the second
argument struct gives further information on the structure of X depending on its type.
Available variable types include:

type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is
either full (arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or
identically zero.

If X has R diagonal blocks, struct is an R-by-2 matrix where

+ struct(r,1) is the size of the r-th block
+ struct(r,?2) is the type of the r-th block (1 for full, O for scalar, —1 for zero block).

type=2: Full m-by-n rectangular matrix. Set struct = [m,n] in this case.

type=3: Other structures. With Type 3, each entry of X is specified as zero or +x where x,
is the n-th decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

+ struct(i, j)=0if X(, j) is a hard zero
+ struct(i,j)=nif X(@G,j) =x,
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« struct(i,j)=—nif X@,j) =—x,

Sophisticated matrix variable structures can be defined with Type 3. To specify a
variable X of Type 3, first identify how many free independent entries are involved in X,
These constitute the set of decision variables associated with X. If the problem already
involves n decision variables, label the new free variables as %1, . . ., X,4. The structure
of Xis then defined in terms of %11, . . ., Xn+p as indicated above. To help specify matrix
variables of Type 3, Imivar optionally returns two extra outputs: (1) the total number
n of scalar decision variables used so far and (2) a matrix sX showing the entry-wise
dependence of X on the decision variables x1, . . ., x,.

Examples

Example 1
Consider an LMI system with three matrix variables X;, X5, X3 such that

* X is a 3-by-3 symmetric matrix (unstructured),
* X, 1is a 2-by-4 rectangular matrix (unstructured),
. ){3 =

A 0 0 C
5 0 F
0 5212E

where A is an arbitrary 5-by-5 symmetric matrix, §; and 8, are scalars, and I, denotes
the identity matrix of size 2.

These three variables are defined by

setimis([])

X1 = Imivar(l1,[3 1]) % Type 1

X2 = Imivar(2,[2 4]) % Type 2 of dim. 2x4
X3 = Imivar(1,[5 1;1 0;2 0]) % Type 1

The last command defines X3 as a variable of Type 1 with one full block of size 5 and two
scalar blocks of sizes 1 and 2, respectively.
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Example 2

Combined with the extra outputs n and sX of Imivar, Type 3 allows you to specify fairly
complex matrix variable structures. For instance, consider a matrix variable X with
structure

X, 0°C
X:Dol x,E
0 o

where X; and X, are 2-by-3 and 3-by-2 rectangular matrices, respectively. You can specify
this structure as follows:

1 Define the rectangular variables X; and X, by

setimis([])
[X1,n,sX1] = Imivar(2,[2 3])
[X2,n,sX2] = Imivar(2,[3 2])

The outputs sX1 and sX2 give the decision variable content of X; and Xs:

sX1
sX1 =
1 2 3
4 5 6
sX2
sX2 =
7 8
9 10
11 12

For instance, sX2(1,1)=7 means that the (1,1) entry of X, is the seventh decision
variable.

2 Use Type 3 to specify the matrix variable X and define its structure in terms of those
of X; and Xa:

[X,n,sX] = Imivar(3,[sX1,zeros(2);zeros(3),sX2])

The resulting variable X has the prescribed structure as confirmed by
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sX

sX =
1 2 3 0 0
4 5 6 0 0
0 0 0 7 8
0 0 0 9 10
0 0 0 11 12

See Also

setimis | Imiterm | getlmis | Imiedit | skewdec | delmvar | setmvar
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loopmargin

Stability margin analysis of LTI and Simulink feedback loops

Syntax

[cm,dm,mm] = loopmargin(L)

[m1,m2] = loopmargin(L,MFLAG)
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C)

[m1,m2,m3] = loopmargin(P,C,MFLAG)

Description

[cm,dm,mm] = loopmargin(L) analyzes the multivariable feedback loop consisting
of the loop transfer matrix L (size N-by-N) in negative feedback with an N-by-N identity
matrix.

cm, or classical gain and phase margins, is an N-by-1 structure corresponding to loop-at-
a-time gain and phase margins for each channel (See al Imargin for details on the fields
of cm.)

dm is an N-by-1 structure corresponding to loop-at-a-time disk gain and phase margins
for each channel. The disk margin for the i-th feedback channel defines a circular region
centered on the negative real axis at the average GainMargin (GM), e.g. , (GMiow+GMpigh)/2,
such that L(i, 1) does not enter that region. Gain and phase disk margin bounds

are derived from the radius of the circle, calculated based on the balanced sensitivity
function.

mm, the multiloop disk margin, is a structure. mm describes how much independent and
concurrent gain and phase variation can occur independently in each feedback channel
while maintaining stability of the closed-loop system. Note that mm is a single structure,
independent of the number of channels. This is because variations in all channels are
considered simultaneously. As in the case for disk margin, the guaranteed bounds are
calculated based on a balanced sensitivity function.
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If L is a ss/tf/zpk object, the frequency range and number of frequency points used to
calculate dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character
string argument. [m1,m2] = loopmargin(L, "m,c") returns the multi-loop
diskmargin (*m*) in m1, and the classical margins ("c") in m2. Use "d" to specify the
disk margin. This optional second argument may be any combination, in any order, of the
3 characters "c”, "d” and "m"~.

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = (P,C) analyzes the multivariable feedback
loop consisting of the controller C in negative feedback with the plant, P. C should only
be the compensator in the feedback path, without reference channels, if it is a 2-Dof
architecture. That is, if the closed-loop system has a 2-Dof architecture the reference
channel of the controller should be eliminated, resulting in a 1-Dof architecture, as
shown.

reference

e

2-dof architecture 1-dof architecture

cmi ,dmi and mmi structures correspond to the classical loop-at-a-time gain and phase
margins, disk margins and multiloop channel margins at the plant input respectively.
The structures cmo, dmo and mmo have the same fields as described for cmi, dmi and
mmi though they correspond to the plant outputs. mmio, or multi-input/multi-output
margins, is a structure corresponding to simultaneous, independent, variations in all the
individual input and output channels of the feedback loops. mmio has the same fields as
mmi and mmo.

If the closed-loop system is an ss/tf/zpk, the frequency range and number of points
used to calculate cm, dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character
string argument. [m1,m2,m3] = (L, "mo,ci,mm") returns the multi-loop diskmargin
at the plant output ("mo") in ml, the classical margins at the plant input ("ci ") in m2,
and the disk margins for simultaneous, independent variations in all input and output
channels (*"mm*) in m3. This optional third argument may be any comnination, in any
order, of the 7 character pairs 'ci®, 'di', "mi ", "co”, "do, "mo", and "mm".
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Usage with Simulink

[cm,dm,mm] = loopmargin(Model,Blocks,Ports) does a multi-loop stability
margin analysis using Simulink Control Design software. Model specifies the name

of the Simulink diagram for analysis. The margin analysis points are defined at the
output ports (Ports) of blocks (Blocks) within the model. Blocks is a cell array of full
block path names and Ports is a vector of the same dimension as Blocks. If all Blocks
have a single output port, then Ports would be a vector of ones with the same length as
Blocks.

Three types of stability margins are computed: loop-at-a-time classical gain and phase
margins (cm), loop-at-a-time disk margins (dm) and a multi-loop disk margin (mm).

[cm,dm,mm] = loopmargin(Model,Blocks,Ports,OP) uses the operating point
object OP to create linearized systems from the Simulink Model.

[cm,dm,mm, info] = loopmargin(Model,Blocks,Ports,OP) returns info
in addition to the margins. info is a structure with fields OperatingPoint,
LinearizationlO and SignalNames corresponding to the analysis.

Margin output arguments can be limited to only those requested using an optional
charcter string argument. INFO is always the last output. For example, [mm,cm, info]
= loopmargin(Model ,Blocks,Ports, "m,c") returns the multi-loop diskmargin
("m") in mm, the classical margins (*c") in cm, and the info structure.

Basic Syntax

[cm,dm,mm] = Boopmargin(L) cmis calculated using the al Imargin command and
has the same fields as al Imargin. The cm is a structure with the following fields:

Field Description

GMFrequency All —180 deg crossover frequencies (in radians-per-second)

GainMargin Corresponding gain margins (GM = 1/L where L is the gain at
Crossover)

PhaseMargin Corresponding phase margins (in degrees)

PMFrequency All 0 dB crossover frequencies (in radians-per-second)

DelayMargin Delay margins (in seconds for continuous-time systems, and
multiples of the sample time for discrete-time systems)
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Field Description

Stable 1 if nominal closed loop is stable, O otherwise. If L is a frd or ufrd
object, the Stable flag is set to NaN.

dm, or Disk Margin, is a structure with the following fields

Field Description

GainMargin Smallest gain variation (GM) such that a disk centered at the point -
(GM(2) + GM(2))/2 would just touch the loop transfer function

PhaseMargin Smallest phase variation, in degrees, corresponding to the disk
described in the GainMargin field (degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in radians-per-
second)

mm is a structure with the following fields.

Field Description

GainMargin Guaranteed bound on simultaneous, independent, gain variations
allowed in all plant channels

PhaseMargin Guaranteed bound on simultaneous, independent, phase variations
allowed in all plant channels (degrees)

Frequency Associated with GainMargin/PhaseMargin fields (in radians-per-
second)

Examples

MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or
distance to —1) can be inaccurate measures of multivariable robustness margins. You
will see that margins of the individual loops can be very sensitive to small perturbations

within other loops.

The nominal closed-loop system considered here is as follows
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K -

G and K are 2-by-2 multiinput/multioutput (MIMO) systems, defined as

Og—q? +1|]
G = 21 2Ds a a(s )QK=12
s“+a E—a(s+1) S—UZE

Set a: = 10, construct G in state-space form, and compute its frequency response.

[0 10;-10 0];

eye(2);

[1 8;-10 1];

zeros(2,2);

ss(a,b,c,d);

[1 -2;0 1];

i,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(G,K);

= 20 | 1 O T I T |

a
b
c
d
G
K
[c

First consider the margins at the input to the plant. The first input channel has infinite
gain margin and 90 degrees of phase margin based on the results from the al Imargin
command, smi (1). The disk margin analysis, dmi, of the first channel provides similar
results.

cmi(l)
ans =
GMFrequency: [1x0 double]
GainMargin: [1x0 double]
PMFrequency: 21
PhaseMargin: 90
DMFrequency: 21
DelayMargin: 0.0748
Stable: 1
dmi (1)
ans =
GainMargin: [0 Inf]
PhaseMargin: [-90 90]
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Frequency: 1.1168

The second input channel has a gain margin of 2.105 and infinite phase margin based
on the single-loop analysis, cmi (2). The disk margin analysis, dmi (2), which allows
for simultaneous gain and phase variations a loop-at-a-time results in maximum gain
margin variations of 0.475 and 2.105 and phase margin variations of +/- 39.18 degs.

cmi(2)
ans =
GMFrequency: O
GainMargin: 2.1053
PMFrequency: [1x0 double]
PhaseMargin: [1x0 double]
DMFrequency: [1x0 double]
DelayMargin: [1x0 double]
Stable: 1
dami (2)
ans =
GainMargin: [0.4749 2.1056]
PhaseMargin: [-39.1912 39.1912]
Frequency: 0.0200

The multiple margin analysis of the plant inputs corresponds to allowing simultaneous,
independent gain and phase margin variations in each channel. Allowing independent
variation of the input channels further reduces the tolerance of the closed-loop system
to variations at the input to the plant. The multivariable margin analysis, mmi, leads

to a maximum allowable gain margin variation of 0.728 and 1.373 and phase margin
variations of +/- 17.87 deg. Hence even though the first channel had infinite gain margin
and 90 degrees of phase margin, allowing variation in both input channels leads to a
factor of two reduction in the gain and phase margin.

mmi
mmi =
GainMargin: [0.7283 1.3730]
PhaseMargin: [-17.8659 17.8659]
Frequency: 9.5238e-004

The guaranteed region of phase and gain variations for the closed-loop system can be
illustrated graphically. The disk margin analysis, dmi (2), indicates the closed-loop
system will remain stable for simultaneous gain variations of 0.475 and 2.105 (+ 6.465
dB) and phase margin variations of + 39.18 deg in the second input channel. This is
denoted by the region associated with the large ellipse in the following figure. The
multivariable margin analysis at the input to the plant, mmi, indicates that the closed-
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loop system will be stable for independent, simultaneous, gain margin variation up to
0.728 and 1.373 (+2.753 dB) and phase margin variations up to = 17.87 deg (the dark
ellipse region) in both input channels.

Gain and Praess Magin

T Guarantesd Disk Magin: nput 2
1ok I oo arnbesd WMuitivariable input Marg

1 1 1 1 1 1 1 1
—40 -0 =20 =10 a L} 0 a0 40
Phass Valation {degraes)

Galn varadon ()
[=]

1

The output channels have single-loop margins of infinite gain and 90 deg phase
variation. The output multivariable margin analysis, mmo, leads to a maximum allowable
gain margin variation of 0.607 and 1.649 and phase margin variations of +/- 27.53 degs.
Hence even though both output channels had infinite gain margin and 90 degrees of
phase margin, simultaneous variations in both channels significantly reduce the margins
at the plant outputs.

mmo
mmo =
GainMargin: [0.6065 1.6489]
PhaseMargin: [-27.5293 27.5293]
Frequency: 0.2287

If all the input and output channels are allow to vary independently, mmio, the gain
margin variation allow are 0.827 and 1.210 and phase margin variations allowed are +/-
10.84 deg.

mmero
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mmio =
GainMargin: [0.8267 1.2097]
PhaseMargin: [-10.8402 10.8402]
Frequency: 0.2287

More About

Algorithms

Two well-known loop robustness measures are based on the sensitivity function S=(/-L)~
! and the complementary sensitivity function T=L(J-L)™ where L is the loop gain matrix
associated with the input or output loops broken simultaneously. In the following figure,
S is the transfer matrix from summing junction input z to summing junction output e.

T is the transfer matrix from u to y. If signals e and y are summed, the transfer matrix
from u to e+y is given by (I+L) - (I-L)", the balanced sensitivity function. It can be shown
(Dailey, 1991, Blight, Daily and Gangass, 1994) that each broken-loop gain can be
perturbed by the complex gain (1+A)(1-A) where |A|<1/u(S+T) or |A|<1/0,,q,(S+T) at
each frequency without causing instability at that frequency. The peak value of p(S+7) or
Omax(S+T) gives a robustness guarantee for all frequencies, and for p(S+7) the guarantee
is nonconservative (Blight, Daily and Gangass, 1994).

je+y
_..@_._

u e = (I = L) u = Su
U € y = LI — L) u = Tu

e -I'-:I,f = (+L)-(I-L)'u = (S+Tu

L

This figure shows a comparison of a disk margin analysis with the classical notations of
gain and phase margins.
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Disk gain margin (DGM) and disk phase mamin (OPM) inthe Myquist plot

1 e :

(MR

Unit Disk

-0 — Disk Mamgin
Critical point| |

06

04t -

Imaginary Axis
o
T

The Nyquist plot is of the loop transfer function L(s)

|
L(s) = 20
(s+1(s” +1.6s +16)

* The Nyquist plot of L corresponds to the blue line.
*  The unit disk corresponds to the dotted red line.

*  GM and PM indicate the location of the classical gain and phase margins for the

system L.

* DGM and DPM correspond to the disk gain and phase margins. The disk margins

provide a lower bound on classical gain and phase margins.

2-213



2 Alphabetical List

2-214

* The disk margin circle corresponds to the dashed black line. The disk margin
corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the
loop transfer function L. This location is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the balanced
sensitivity function S+7. For a given peak value of u(S+7), any simultaneous phase and
gain variations applied to each loop independently will not destabilize the system if the
perturbations remain inside the corresponding circle or disk. This corresponds to the disk
margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the balanced sensitivity
function S+7. Instead of calculating u(S+7) a single loop at a time, all the channels

are included in the analysis. A p- analysis problem is formulated with each channel
perturbed by an independent, complex perturbation. The peak u(S+7) value guarantees
that any simultaneous, independent phase and gain variations applied to each loop
simultaneously will not destabilize the system if they remain inside the corresponding
circle or disk of size p(S+7).

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems,
Ph.D. Thesis, Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, “Practical control law design for aircraft using
multivariable techniques,” International Journal of Control, Vol. 59, No. 1, 1994, pp.
93-137.

Bates, D., and I. Postlethwaite, “Robust Multivariable Control of Aerospace Systems,”
Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also

allmargin | mussv | bode | loopsens | robuststab | wcgain | wcsens |
wcmargin
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loopsens

Sensitivity functions of plant-controller feedback loop

Syntax

loops = loopsens(P,C)

Description

loops = loopsens(P,C) creates a struct, loops, whose fields contain the
multivariable sensitivity, complementary and open-loop transfer functions. The closed-
loop system consists of the controller C in negative feedback with the plant P. C should
only be the compensator in the feedback path, not any reference channels, if it is a 2-
Dof controller as seen in the figure below. The plant and compensator P and C can be
constant matrices, double, Iti objects, frd/ss/tf/zpk, or uncertain objects umat/
ufrd/uss.

reference

—_—

2-dof architecture 1-dof architecture

The loops returned variable is a structure with fields:

Field Description

Poles Closed-loop poles. NaN for Frd/ufrd objects

Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd
objects

Si Input-to-plant sensitivity function

Input-to-plant complementary sensitivity function

Li Input-to-plant loop transfer function
So Output-to-plant sensitivity function
To Output-to-plant complementary sensitivity function
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Field Description

Lo Output-to-plant loop transfer function

PSi Plant times input-to-plant sensitivity function

CSo Compensator times output-to-plant sensitivity function

The multivariable closed-loop interconnection structure, shown below, defines the input/
output sensitivity, complementary sensitivity, and loop transfer functions.

€]
dl ._f’i_\"'l P . E-_'.
(o] c iy
€3
Description Equation
Input sensitivity (TF ol dl) (I+CP)!
Input complementary sensitivity (TF,y 1) CPI +cCp)™
Output sensitivity (TFeS _ dz) (I+PC)!
Output complementary sensitivity (-TF,4._g9) PC(I+PC)™
Input loop transfer function cpP
Output loop transfer function PC

Examples

Single Input, Single Output (SISO) Loop Sensitivities

Consider PI controller for a dominantly 1st-order plant, with the closed-loop bandwidth
of 2.5 rads/sec. Since the problem is SISO, all gains are the same at input and output.
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Magnitude {dB)

Fhase (deq)

gamma = 2; tau = 1.5; taufast = 0.1;

P = tf(gamma, [tau 1])*tf(1,[taufast 1]);
tauclp = 0.4;

xiclp = 0.8;

wnclp = 1/(tauclp*xiclp);

KP = (2*xiclp*wnclp*tau - 1)/gamma;

Kl = wnclp”2*tau/gamma;

C = tf([KP KI]1,[1 0D);

Form the closed-loop (and open-loop) systems with loopsens, and plot Bode plots using

the gains at the plant input.
loops = loopsens(P,C);
bode(loops.Si, “r",loops.Ti,"b",loops.Li,"g")

Bode Diagram

From: du To: Out{1)

100 T

5|:-\\

180 T T T

ABDE—— vl il el
10°2 107" 10" 10’
Frequency (rad/s)
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Magnitude {dB)

Finally, compare the open-loop plant gain to the closed-loop value of PSi.

bodemag(P, "r~, loops.PSi, "b")

Bode Diagram

From: du To:yP
1E T LR | T LB R | T LN NN |

-QU i i il i i i iiiil i i i gl i i iidiiil
102 11 Ik 10’ 102 103
Frequency (rad/s)

Multi Input, Multi Output (MIMO) Loop Sensitivities

Consider an integral controller for a constant-gain, 2-input, 2-output plant. For purposes
of illustration, the controller is designed via inversion, with different bandwidths in each
rotated channel.

P =ss([2 3;-1 1]);

BW = diag([2 5]);

[U,S,V] = svd(P.d); % get SVD of Plant Gain
Csvd = V*inv(S)*BW*tf(1,[1 0])*U"; % iInversion based on SVD
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Magnitude {dB) ; Phase (deq)

Tor Cut(2)

To Crut(1) To: Cuti1)

To: Cuti2)

loops = loopsens(P,Csvd);
bode(loops-So,"g",loops.To, “"r.",logspace(-1,3,120))
title("Output Sensitivity (green), Output Complementary Sensitivity (red)");

Output Sensitivity (green), Output Complementary Sensitivity (red)

5 From: dy{1) From: dy(2)
50 /_\
-100
360 , ;
ﬁ_
-360
0 I I - "'_\
-100
360 | ;
ﬁ_—
of T ———
-360
10" 10° 10" 10
Frequency (rad/s)
See Also

loopmargin | wcsens | robuststab | wecmargin
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loopsyn

H,, optimal controller synthesis for LTI plant

Syntax
[K,CL,GAM, INFO]=1oopsyn(G,Gd)

[K,CL,GAM, INFO]=1oopsyn(G,Gd,RANGE)

Description

loopsyn is an H,, optimal method for loopshaping control synthesis. It computes a
stabilizing H_controller K for plant G to shape the sigma plot of the loop transfer
function GK to have desired loop shape G4 with accuracy y = GAM in the sense that if g is
the 0 db crossover frequency of the sigma plot of G4(jw), then, roughly,

0 (GUWK(jw) == a(Gy(jw) forall w> ¢

< |+

0 (GUWK(jw)< y o(Gy(j ) for all w> ¢

The STRUCT array INFO returns additional design information, including a MIMO
stable min-phase shaping pre-filter W, the shaped plant G, = GW, the controller for the
shaped plant K, = WK, as well as the frequency range {omin,@max} 0ver which the loop
shaping is achieved

Input Argument | Description

G LTI plant

Gd Desired loop-shape (LTI model)

RANGE (optional, default {0, Inf}) Desired frequency range for loop-
shaping, a 1-by-2 cell array {@min,@max}; @max should be at least ten
times ®mpin
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Output Argument |Description

K LTT controller

CL= G*K/(1 LTI closed-loop system

+GK)

GAM Loop-shaping accuracy (GAM > 1, with GAM=1 being perfect fit
INFO Additional output information

INFO.W LTI pre-filter W satisfying o(Gy) = 0 (GW) for all w;

W is always minimum-phase.

INFO.Gs LTI shaped plant: G, = GW.
INFO.Ks LTI controller for the shaped plant: K, = WK.
INFO.range {@min,@maxs cell-array containing the approximate frequency range

over which loop-shaping could be accurately achieved to with
accuracy G. The output INFO. range is either the same as or a subset
of the input range.

Examples
Optimal loopsyn Loop-Shaping Control

Calculate the optimal loopsyn loop shaping control for a 5-state, 4-output, 5-input plant
with a full-rank nonmininum-phase zero at s = 10.

rng(0, "twister™);

s = tf("s");

wO = 5;

Gd = 5/s; % desired bandwidth w0=5

G =((s-10)/(s+100))*rss(3,4,5); % 4-by-5 non-min-phase plant

[K,CL,GAM, INFO] = loopsyn(G,Gd);
sigma(G*K, "r" ,Gd*GAM, "k-_",Gd/GAM, "k-_",{.1,100}) % plot result
legend("G*K", "Gd*GAM™ , "Gd/GAM™)
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Singular Values (dB)

Singular Values

G*K
L e Gd*GAM | |
H'“‘-..‘ ————— Gd/IGAM
30 k ~. 1
% ‘H"-_
20T E\-.,\x .h“u.‘_‘h -
H}.H\I\ "y - }
10 [ T ~. I
S ~_
0 ‘%:::_H ~. N
10 F “‘:T:HE_ T ]
" T— T
", - "-\-\_\_\_\_\_\_\-:::I
20 e 3
30 RN
107" 10" 10’ 102

Frequency (rad/s)

This plot shows that the controller K optimally fits sigma(G*K). The controller falls
between sigma(Gd)+ GAM and sigma(Gd)- GAM (expressed in dB). In this example,
GAM = 2.0423 = 6.2026 dB.

Limitations

The plant G must be stabilizable and detectable, must have at least as many inputs as
outputs, and must be full rank; i.e,

+ size(G,2) > size(G,1)
+ rank(fregresp(G,w)) = size(G,1) for some frequency w.
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The order of the controller K can be large. Generically, when Gy is given as a SISO LTI,
then the order Ng of the controller K satisfies

Ng = NGs + NW

= NyNgq + Nrup + Nw

= NyNGd + NRHP + NG

where

* N, denotes the number of outputs of the plant G.

*  Nprgp denotes the total number of nonstable poles and nonminimum-phase zeros of the
plant G, including those on the stability boundary and at infinity.

* Ng, Ngs, Ngg and Ny denote the respective orders of G, G, G and W.

Model reduction can help reduce the order of K — see reduce and ncfmr.

More About

Algorithms

Using the GCD formula of Le and Safonov [1], loopsyn first computes a stable-
minimum-phase loop-shaping, squaring-down prefilter W such that the shaped plant G, =
GW s square, and the desired shape Gy is achieved with good accuracy in the frequency
range {®min,@maxs Oy the shaped plant; i.e.,

0(Gy) = 0(Gy) for all ® € {®yin,@max}-

Then, loopsyn uses the Glover-McFarlane [2] normalized-coprime-factor control
synthesis theory to compute an optimal “loop-shaping” controller for the shaped plant via
Ks=ncfsyn(Gs), and returns K=W*Ks.

If the plant G is a continuous time LTI and

1 G has a full-rank D-matrix, and
2 no finite zeros on the jo-axis, and

3 {wminywmax}: [0,00] 5

then GW theoretically achieves a perfect accuracy fit 0(Gy) = o(GW) for all frequency w.
Otherwise, loopsyn uses a bilinear pole-shifting bilinear transform [3] of the form

Gshifted=bilin(G,-1,"S_Tust", [Wnin, Wnax]) »
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which results in a perfect fit for transformed Gshifted and an approximate fit over

the smaller frequency range [@min,@max] for the original unshifted G provided that @,y
>> @nin. For best results, you should choose @, to be at least 100 times greater than
®min. In some cases, the computation of the optimal W for Gshifted may be singular

or ill-conditioned for the range [@min,@max], a8 Wwhen Gshifted has undamped zeros or,
in the continuous-time case only, Gshifted has a D-matrix that is rank-deficient); in
such cases, loopsyn automatically reduces the frequency range further, and returns the
reduced range [@min,@max] as a cell array in the output INFO. range={omin,@max}

. Loop Shaping of HIMAT Pitch Axis Controller

References

[1] Le, V.X., and M.G. Safonov. Rational matrix GCD's and the design of squaring-down
compensators—a state space theory. IEEE Trans. Autom.Control, AC-36(3):384—
392, March 1992.

[2] Glover, K., and D. McFarlane. Robust stabilization of normalized coprime factor
plant descriptions with H,.-bounded uncertainty. IEEE Trans. Autom. Control,
AC-34(8):821-830, August 1992.

[3] Chiang, R.Y., and M.G. Safonov. H,, synthesis using a bilinear pole-shifting
transform. AIAA J. Guidance, Control and Dynamics, 15(5):1111-1115,
September—October 1992.

See Also

mixsyn | ncfsyn
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looptune

Tune fixed-structure feedback loops

Syntax

[G,C,gam] = looptune(GO,CO,wc)
[G,C,gam] = looptune(GO,CO,wc,Reql, - .. ,RegN)
[G,C,gam] = looptune(...,options)

[G,C,gam, info] = looptune(...)

Description

[G,C,gam] = looptune(GO,CO,wc) tunes the feedback loop

to meet the following default requirements:

Bandwidth — Gain crossover for each loop falls in the frequency interval wc

Performance — Integral action at frequencies below wc

Robustness — Adequate stability margins and gain roll-off at frequencies above wc
The tunable genss model CO specifies the controller structure, parameters, and

initial values. The model GO specifies the plant. GO can be a Numeric LTI model, or,
for co-tuning the plant and controller, a tunable genss model. The sensor signals y
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(measurements) and actuator signals u (controls) define the boundary between plant and
controller.

Note: For tuning Simulink models with looptune, use slTuner to create an interface to
your Simulink model. You can then tune the control system with looptune for sl Tuner
(requires Simulink Control Design).

[G,C,gam] = looptune(GO,CO,wc,Reql, ... ,RegN) tunes the feedback loop

to meet additional design requirements specified in one or more tuning goal objects
Reql,...,ReqN. Omit wc to use the requirements specified in Reql,...,ReqN instead of
an explicit target crossover frequency and the default performance and robustness
requirements.

[G,C,gam] = looptune(...,options) specifies further options, including target
gain margin, target phase margin, and computational options for the tuning algorithm.

[G,C,gam, info] = looptune(...) returns a structure info with additional
information about the tuned result. Use info with the loopview command to visualize
tuning constraints and validate the tuned design.

Input Arguments

GO
Numeric LTI model or tunable genss model representing plant in control system to tune.

The plant is the portion of your control system whose outputs are sensor signals
(measurements) and whose inputs are actuator signals (controls). Use connect to build
GO from individual numeric or tunable components.

co

Generalized LTI model representing controller. CO specifies the controller structure,
parameters, and initial values.

The controller is the portion of your control system that receives sensor signals
(measurements) as inputs and produces actuator signals (controls) as outputs. Use
Control Design Blocks and Generalized LTI models to represent tunable components of
the controller. Use connect to build CO from individual numeric or tunable components.
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wcC

Vector specifying target crossover region [wcmin,wcmax]. The looptune command
attempts to tune all loops in the control system so that the open-loop gain crosses 0 dB
within the target crossover region.

A scalar wc specifies the target crossover region [wc/2,2*wc].

Reql, ... ,RegN

One or more TuningGoal objects specifying design requirements, such as
TuningGoal . Tracking, TuningGoal .Gain, or TuningGoal . LoopShape.

options
Set of options for looptune algorithm, specified using looptuneOptions. See

looptuneOptions for information about the available options, including target gain
margin and phase margin.

Output Arguments

G

Tuned plant.

If GO is a Numeric LTI model, G is the same as GO.

If GO is a tunable genss model, G is a genss model with Control Design Blocks of the
same number and types as GO. The current value of G is the tuned plant.

C

Tuned controller. C is a genss model with Control Design Blocks of the same number
and types as CO. The current value of C is the tuned controller.

gam
Parameter indicating degree of success at meeting all tuning constraints. A value of

gam <= 1 indicates that all requirements are satisfied. gam >> 1 indicates failure to
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meet at least one requirement. Use loopview to visualize the tuned result and identify
the unsatisfied requirement.

For best results, use the RandomStart option in looptuneOptions to obtain several
minimization runs. Setting RandomStart to an integer N > 0 causes looptune to

run the optimization N additional times, beginning from parameter values it chooses
randomly. You can examine gam for each run to help identify an optimization result that
meets your design requirements.

info

Data for validating tuning results, returned as a structure. To use the data in info, use
the command loopview(G,C, info) to visualize tuning constraints and validate the
tuned design.

info contains the following tuning data:
Di,Do

Optimal input and output scalings, returned as state-space models. The scaled plant is
given by Do\G*Di.

Specs

Design requirements that looptune constructs for its call to systune for tuning (see
“Algorithms” on page 2-230), returned as a vector of TuningGoal requirement objects.

Runs

Detailed information about each optimization run performed by systune when called by
looptune for tuning (see “Algorithms” on page 2-230), returned as a data structure.

The contents of Runs are the info output of the call to systune. For information about
the fields of Runs, see the info output argument description on the systune reference

page.

Examples

Tune the control system of the following illustration, to achieve crossover between 0.1
and 1 rad/min.
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The 2-by-2 plant G is represented by:

G(s) 1 87.8 -86.4
§)=——— .
755 +1[108.2 -109.6

The fixed-structure controller, C, includes three components: the 2-by-2 decoupling
matrix D and two PI controllers Pl_L and P1_V. The signals r, y, and e are vector-valued
signals of dimension 2.

Build a numeric model that represents the plant and a tunable model that represents the
controller. Name all inputs and outputs as in the diagram, so that looptune knows how
to interconnect the plant and controller via the control and measurement signals.

tf("s™);

1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
-InputName = {"qL","qV"};

-OutputName = "y";

OOOown

D = Itiblock.gain("Decoupler” ,eye(2));
D.InputName = "e";

D.OutputName = {"pL~,"pV"};

PI_L = Itiblock.pid("PI_L","pi");
PI_L.InputName = "pL*~;

PI_L.OutputName = "qL";

PI1_V = Itiblock.pid("PI_V*,"pi");
PI_V._InputName = "pV*;

PI1_V._OutputName = "qV~;

suml = sumblk("e = r - y",2);

CO = connect(PI_L,P1_V,D,suml,{"r", "y "}, {"qL","qV"});

wc = [0.1,1];
[G,C,gam, info] = looptune(G,CO,wc);

2-229



2 Alphabetical List

2-230

C is the tuned controller, in this case a genss model with the same block types as CO.

You can examine the tuned result using loopview.

Alternatives

For tuning Simulink models with looptune, see slTuner and looptune (requires
Simulink Control Design).

More About

Algorithms

looptune automatically converts target bandwidth, performance requirements, and
additional design requirements into weighting functions that express the requirements
as an H,, optimization problem. looptune then uses systune to optimize tunable
parameters to minimize the H, norm. For more information about the optimization
algorithms, see [1].

looptune computes the H, norm using the algorithm of [2] and structure-preserving
eigensolvers from the SLICOT library. For more information about the SLICOT library,
see http://slicot.org.

References
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TuningGoal .Tracking | slTuner | looptune (for slTuner) |
TuningGoal .Gain | TuningGoal .LoopShape | hinfstruct | systune |
looptuneOptions | loopview | loopmargin | genss | connect
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looptuneOptions

Set options for looptune

Syntax

options = looptuneOptions
options = looptuneOptions(Name,Value)

Description

options = looptuneOptions returns the default option set for the looptune
command.

options = looptuneOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* ). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

looptuneOptions takes the following Name arguments:

"GainMargin*

Target gain margin in decibels. GainMargin specifies the required gain margin for the
tuned control system. For MIMO control systems, the gain margin is the multiloop disk

margin. See loopmargin for the definition of the multiloop disk margin.

Default: 7.6 dB
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"PhaseMargin®

Target phase margin in degrees. PhaseMargin specifies the required phase margin for
the tuned control system. For MIMO control systems, the phase margin is the multiloop
disk margin. See loopmargin for the definition of the multiloop disk margin.

Default: 45 degrees

"Display”

String determining the amount of information to display during looptune runs.
Display takes the following values:

* "off" — Run in silent mode, displaying no information during or after the run.

+  "iter" — Display optimization progress after each iteration. The display includes
the value of the objective parameter gam after each iteration. The display also
includes a Progress value, indicating the percent change in gam from the previous
iteration.

+ "final" — Display a one-line summary at the end of each optimization run. The
display includes the minimized value of gam and the number of iterations for each
run.

Default: " Ffinal*®

"Maxliter”

Maximum number of iterations in each optimization run.
Default: 300

"RandomStart*

Number of additional optimizations starting from random values of the free parameters
in the controller.

If RandomStart = 0, looptune performs a single optimization run starting from
the initial values of the tunable parameters. Setting RandomStart = N > Oruns N
additional optimizations starting from N randomly generated parameter values.

looptune tunes by finding a local minimum of a gain minimization problem. To increase
the likelihood of finding parameter values that meet your design requirements, set
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RandomStart > 0. You can then use the best design that results from the multiple
optimization runs.

Use with UseParallel = true to distribute independent optimization runs among
MATLAB workers (requires Parallel Computing Toolbox software).

Default: 0
"UseParallel*®
Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among
workers in a parallel pool. If there is an available parallel pool, then the software
performs independent optimization runs concurrently among workers in that pool. If no
parallel pool is available, one of the following occurs:

+ If Automatically create a parallel pool is selected in your Parallel Computing
Toolbox preferences, then the software starts a parallel pool using the settings in
those preferences.

+ If Automatically create a parallel pool is not selected in your preferences, then
the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can
manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
Default: false

"TargetGain”

Target value for the objective parameter gam.

The looptune command converts your design requirements into normalized gain
constraints. The command then tunes the free parameters of the control system to drive
the objective parameter gam below 1 to enforce all requirements.

The default TargetGain = 1 ensures that the optimization stops as soon as gam falls
below 1. Set TargetGain to a smaller or larger value to continue the optimization or
start sooner, respectively.

Default: 1
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"TolGain"
Relative tolerance for termination.

The optimization terminates when the objective parameter gam decreases by less than
TolGailn over 10 consecutive iterations. Increasing TolGain speeds up termination, and
decreasing TolGain yields tighter final values.

Default: 0.001
"MaxFrequency”
Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy |p| <
MaxFrequency.

To allow looptune to choose the closed-loop poles automatically, based upon the
system's open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast
dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: Inf
"*MinDecay"
Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay. Increase this value to
improve the stability of closed-loop poles that do not affect the closed-loop gain due to
pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the
system you are tuning.

Default: 1e-7

Output Arguments
options

Option set containing the specified options for the looptune command.
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Examples

Create Options Set for looptune

Create an options set for a looptune run using three random restarts. Also, set the
target gain and phase margins to 6 dB and 50 degrees, respectively, and limit the closed-
loop pole magnitude to 100.

options = looptuneOptions(“RandomStart®,3", "GainMargin®,6, ...
"PhaseMargin®,50, "SpecRadius”,100);

Alternatively, use dot notation to set the values of options.
options = looptuneOptions;

options.RandomStart = 3;

options.GainMargin = 6;

options.PhaseMargin = 50;
options.SpecRadius = 100;

Configure Option Set for Parallel Optimization Runs

Configure an option set for a looptune run using 20 random restarts. Execute these
independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel
computing to speed up looptune tuning of fixed-structure control systems. When you
run multiple randomized looptune optimization starts, parallel computing speeds up
tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing
Toolbox preferences, manually start a parallel pool using parpool. For example:

parpool ;

If Automatically create a parallel pool is selected in your preferences, you do not
need to manually start a pool.

Create a looptuneOptions set that specifies 20 random restarts to run in parallel.

options = looptuneOptions(“RandomStart”,20, "UseParallel”,true);

Setting UseParal lel to true enables parallel processing by distributing the
randomized starts among available workers in the parallel pool.
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Use the looptuneOptions set when you call looptune. For example, suppose you have
already created a plant model GO and tunable controller CO. In this case, the following
command uses parallel computing to tune the control system of GO and CO to the target
Crossoverwc.

[G,C,gamma] = looptune(GO,CO,wc,options);

See Also

| Tooptune | looptune (for slTuner) | loopmargin
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looptuneSetup

Convert tuning setup for looptune to tuning setup for systune

Syntax

[TO,SoftReqs,HardRegs,sysopt] = looptuneSetup(looptunelnputs)

Description

[TO,SoftReqs,HardRegs,sysopt] = looptuneSetup(looptunelnputs)
converts a tuning setup for looptune into an equivalent tuning setup for systune. The
argument looptunelnputs is a sequence of input arguments for looptune that specifies
the tuning setup. For example,

[TO,SoftReqgs,HardReqgs,sysopt] = looptuneSetup(GO,CO,wc,Reql,Req2, loopopt)
generates a set of arguments such that looptune(G0O,CO,wc,Reql,Req2, loopopt)
and systune(T0,SoftReqgs,HardReqs, sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative
to looptune. For example, looptune requires that you tune all channels of a MIMO
feedback loop to the same target bandwidth. Converting to systune allows you to specify
different crossover frequencies and loop shapes for each loop in your control system.

Also, looptune treats all tuning requirements as soft requirements, optimizing them
but not requiring that any constraint be exactly met. Converting to systune allows you
to enforce some tuning requirements as hard constraints, while treating others as soft
requirements.

You can also use this command to probe into the tuning requirements used by looptune.

Note: When tuning Simulink models through an s1Tuner interface, use
looptuneSetup for slTuner (requires Simulink Control Design).
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Examples

Convert looptune Problem into systune Problem
Convert a set of looptune inputs into an equivalent set of inputs for systune.

Suppose you have a numeric plant model, GO, and a tunable controller model, CO.
Suppose also that you used looptune to tune the feedback loop between GO and CO to
within a bandwidth of wc = [wmin,wmax]. Convert these variables into a form that
allows you to use systune for further tuning.

[TO,SoftReqgs,HardReqgs,sysopt] = looptuneSetup(C0,GO,wc);

The command returns the closed-loop system and tuning requirements for the equivalent
systune command, systune(CLO, SoftReqs,HardReqs, sysopt). The arrays
SoftRegs and HardReqs contain the tuning requirements implicitly imposed by
looptune. These requirements enforce the target bandwidth and default stability
margins of looptune.

If you used additional tuning requirements when tuning the system with looptune,
add them to the input list of looptuneSetup. For example, suppose you used

a TuningGoal . Tracking requirement, Reql, and a TuningGoal .Rejection
requirement, Req2. Suppose also that you set algorithm options for looptune using
looptuneOptions. Incorporate these requirements and options into the equivalent
systune command.

[TO,SoftReqgs,HardReqgs,sysopt] = looptuneSetup(C0,G0,wc,Reql,Req2, loopopt);

The resulting arguments allow you to construct an equivalent tuning problem for
systune. In particular, [~,C] = looptune(C0,GO0,wc,Reql,Req2, loopopt) yields
the same result as the following commands.

T
C

systune(T0,SoftRegs,HardReqs, sysopt) ;
setBlockValue(CO,T);

Convert Distillation Column Problem for Tuning With systune

Set up the following control system for tuning with looptune. Then convert the setup
to a systune problem and examine the results. These results reflect the structure

of the control system model that looptune tunes. The results also reflect the tuning
requirements implicitly enforced when tuning with looptune.
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For this example, the 2-by-2 plant G is represented by:

G le) = ] 878 —86.4
"= Trsy1 | 1082 —1006 |-

The fixed-structure controller, C, includes three components: the 2-by-2 decoupling
matrix D and two PI controllers P1_L and P1_V. The signals r, y, and e are vector-valued
signals of dimension 2.

Build a numeric model that represents the plant and a tunable model that represents
the controller. Name all inputs and outputs as in the diagram, so that looptune and
looptuneSetup know how to interconnect the plant and controller via the control and
measurement signals.

s = tf("s");

G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {"gL","qV"};

G.OutputName = {"y"};

D = Itiblock.gain("Decoupler”,eye(2));
D.InputName = "e”";

D.OutputName = {"pL","pV"};

P1_L = lItiblock.pid("PI_L","pi");

PI_L.InputName = "pL*~;

PI_L_.OutputName = "“gL";

P1_V = ltiblock.pid("PI_V=","pi");

PI_V.InputName = "pV*;

PI_V_OutputName = "qV-°;

suml = sumblk("e = r - y",2);

CO = connect(PI_L,P1_V,D,suml,{"r", "y "},{"qgL","qV"});

This system is now ready for tuning with looptune, using tuning goals that you specify.
For example, specify a target bandwidth range. Create a tuning requirement that
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imposes reference tracking in both channels of the system with a response time of 15 s,
and a disturbance rejection requirement.

wc = [0.1,0.5];
TR = TuningGoal .Tracking("r","y",15,0.001,1);
DR = TuningGoal .Rejection({"qL","qV"},1/s);

DR.Focus = [0 0.1];
[G,C,gam, info] = looptune(G,CO,wc,TR,DR);

Final: Peak gain = 1, lterations = 52
Achieved target gain value TargetGain=1.

looptune successfully tunes the system to these requirements. However, you might
want to switch to systune to take advantage of additional flexibility in configuring your
problem. For example, instead of tuning both channels to a loop bandwidth inside wc,
you might want to specify different crossover frequencies for each loop. Or, you might
want to enforce the tuning requirements TR and DR as hard constraints, and add other
requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.
[TO,SoftReqgs,HardReqgs,sysopt] = looptuneSetup(G,CO,wc,TR,DR);

This command returns a set of arguments you can provide to systune for equivalent
results to tuning with looptune. In other words, the following command is equivalent to
the previous looptune command.

[T,fsoft,ghard, info] = systune(T0,SoftReqgs,HardReqs,sysopt);

Final: Peak gain = 1, lterations = 52
Achieved target gain value TargetGain=1.

Examine the arguments returned by looptuneSetup.

TO

TO =

Generalized continuous-time state-space model with O outputs, 2 